
NASA-CR'196792

OPTIMAL EXPERIMENTAL DESIGNS

FOR THE ESTIMATION OF THERMAL PROPERTIES

OF COMPOSITE MATERIALS

L ,.,.... ',: "

?A/_,/?
(-i-:,_"/ k'-*F

An Annual Report

for Contract No. NAG-l-1507

to

NASA Langley Research Center

Hampton, VA

by

Elaine P. Scott

Assistant Professor

and

Deborah A. Moncman

Graduate Research Assistant

Department of Mechanical Engineering

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0238

May 5, 1994

0
0
f_. cO

I "* r_I
U t_

O, C 0

Z _ 0



Optimal Experimental Designs for the Estimation of

Thermal Properties of Composite Materials

by

Deborah A. Moncman

Committee Chairman: Dr. Elaine P. Scott

Mechanical Engineering

(ABSTRACT)

Reliable estimation of thermal properties is extremely important in the utilization

of new advanced materials, such as composite materials. The accuracy of these estimates

can be increased if the experiments are designed carefully. The objectives of this study

are to design optimal experiments to be used in the prediction of these thermal properties

and to then utilize these designs in the development of an estimation procedure to

determine the effective thermal properties (thermal conductivity and volumetric heat

capacity).

The experiments were optimized by choosing experimental parameters that

maximize the temperature derivatives with respect to all of the unknown thermal

properties. This procedure has the effect of minimizing the confidence intervals of the

resulting thermal property estimates. Both one-dimensional and two-dimensional

experimental designs were optimized. A heat flux boundary condition is required in both

analyses for the simultaneous estimation of the thermal properties. For the one-

dimensional experiment, the parameters optimized were the heating time of the applied

heat flux, the temperature sensor location, and the experimental time. In addition to these

parameters, the optimal location of the heat flux was also determined for the two-



dimensionalexperiments.

Utilizing the optimal one-dimensional experiment, the effective thermal

conductivity perpendicularto thefibers andthe effective volumetric heat capacitywere

then estimatedfor an IM7-Bismaleimidecompositematerial. The estimationprocedure

used is basedon the minimization of a least squaresfunction which incorporatesboth

calculated and measuredtemperaturesand allows for the parametersto be estimated

simultaneously.



dimensional experiments.

Utilizing the optimal one-dimensional experiment, the effective thermal

conductivity perpendicular to the fibers and the effective volumetric heat capacity were

then estimated for an IM7-Bismaleimide composite material. The estimation procedure

used is based on the minimization of a least squares function which incorporates both

calculated and measured temperatures and allows for the parameters to be estimated

simultaneously.
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Chapter 1

Introduction

A composite material is composed of two or more materials joined together to

form a new medium with properties superior to those of its individual constituents. There

are many potential advantages of these materials including higher strength-to-weight

ratios, better corrosion and wear resistance, and an increased service life over standard

metals. Because of these improved characteristics, the use of composite materials has

become quite extensive in the past twenty years, with the most widespread use being in

the aerospace and aeronautic industries for the design of aircraft structural components.

For example, composites are used in applications such as aircraft tail sections, wing skins,

and brake linings. The F-111 horizontal stabilizer was the first flight-worthy composite

component and in 1986, an all-composite airplane (the Voyager), set a world record in

nonstop flight around the world, revealing amazing toughness and rigidity against harsh

environmental conditions. However, the use of composites is not limited to the aerospace

industry. Composite technology has also gained the attention of the automotive, tooling

and sporting goods industries. Everything from car bodies and brake linings to tennis



rackets,golf clubs,bicycles,andfishing rodshavebeensuccessfullymanufacturedfrom

compositematerials.

Compositesare typically classifiedaccordingto their reinforcementforms; these

include particulate, fiber, laminar, flake, and filled/skeletal (Vinson and Sierakowski,

1987). Fiber-reinforced composites can be further classified as continuous or

discontinuous. The major typesof reinforcing fibers usedin compositesinclude glass,

carbon/graphite,organic,boron,siliconcarbideandceramicfibers,while themajor matrix

resinsconsistof epoxy,polyimide,polyester,andthermoplastic,with epoxy resinsbeing

the most versatile of the commercially availablematrices. The compositematerials

focusedon in this studyconsistof continuouscarbonfiber-epoxymatrix combinations.

With the increaseduseof compositematerialsin aerospacestructuresandother

applications,it is importantthat thepropertiesof theseadvancedmaterialsbeknown for

designpurposes. Many studieson the mechanicalpropertiesof compositeshave been

conducted;however,limited analyseshavebeenmaderegardingthe thermal properties.

Knowledgeof thethermalpropertiesbecomesimportantwhenthe compositeis subjected

to a non-isothermalenvironmentwhich createsthermalloadson the component. These

thermal loads induce temperature variations within the structure, which in turn results in

the development of thermal stresses and possible structural failure. In order to accurately

predict these thermal stresses and prevent component damage, the temperature response

of the structure must first be known. However, to determine this response, the thermal

properties of the composite sample, which can be thermally or directionally dependent,

are required. The prediction of these thermal properties has provided the motivation for

2



thisstudy. This informationwill thenaid designersin estimating thermal stresses existing

in a structural component and in turn, allow them to prevent component failure.

1.1 Goals and Objectives

The main goal of this research is to predict the thermal properties of composite

materials. This prediction requires temperature measurements, and therefore, experiments

must be conducted. The overall objectives of this study are to

1) develop optimal experimental designs to be used in the prediction of these thermal

properties

and

2) utilize these optimal designs in the development of an estimation procedure to

determine the effective thermal properties, namely the thermal conductivity and

volumetric heat capacity.

Optimal experiments were designed for both isotropic and anisotropic composite materials

by selecting optimal experimental parameters that maximize the sensitivity of the

temperature response with respect to changes in the unknown thermal properties. An

isotropic material has identical properties in every direction while materials exhibiting

directional characteristics are called anisotropic. For the anisotropic composite material,

the effective thermal conductivity both parallel and perpendicular to the fiber axis

direction can be estimated. This optimization procedure was performed because it

increases the accuracy in the resulting thermal property estimates by minimizing the

3



confidenceintervalsof the estimatedparameters.

The experimentaldesignsthat wereoptimizednot only dependon the boundary

conditions used,but also onwhat variability is permitted. An imposedheat flux at one

boundary,resultingin conductiveheattransferthroughthe compositesample,is required

in the design to allow for the simultaneousestimation of the thermal properties.

Therefore,optimalexperimentalparameters,suchasthedurationof the appliedheatflux,

shouldbedetermined.The optimalexperimentalparametersdeterminedfor the isotropic

case include the heating time, sensorlocation, and experimentalduration. For the

anisotropic case,two different experimentaldesignswere used. Both designshad a

uniform heatflux appliedovera portion of oneboundary. However, this portion varied

for the two configurations. Therefore,in additionto the parametersoptimized for the

one-dimensionalcase,the optimal positionof the heat flux was also found in the two-

dimensionalanalysis.

Utilizing the optimal experimental design determined for the isotropic composite

material, the effective thermal conductivity perpendicular to the fiber axis and the

effective volumetric heat capacity were then estimated for a composite consisting of

continuous IM7 graphite fibers and a Bisrnaleimide (5260) epoxy matrix. Note that this

is actually an anisotropic composite material; however, since the thermal conductivity is

only estimated in one direction, this is equivalent to using an isotropic material. The

estimation procedure used in this investigation was the Gauss linearization method and

is based on the minimization of a least-squares function, containing experimental and

calculated temperatures, with respect to the unknown thermal properties. This method not

4



only allows for the effective thermal conductivity and effective volumetric heat capacity

to be estimated simultaneously, but also enables validation of the transient heat

conduction equation.
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Chapter 2

Literature Review

2.1 Determination of Thermal Properties of Composite Materials

This chapter summarizes the present state of knowledge pertaining to the

estimation of thermal properties of composite materials. Due to their anisotropic nature,

the estimation of the thermal properties of composites has proved to be a challenging task.

This estimation problem is further complicated because a composite consists of at least

two different materials, each with different thermal properties. Many methods, both

experimental and analytical, have been proposed for estimating these properties with the

thermal conductivity being most frequently estimated. In the following two sections,

these estimation techniques are reviewed, describing the methods and procedures used.

The experimental techniques utilized include both steady-state and transient heat

conduction processes, while the analytical methods estimate the effective thermal

properties using proposed mathematical models. These models assume prior knowledge

of the thermal properties of the fiber and matrix themselves, along with the void fraction
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of the fibers. The third sectiondescribesa minimization procedurebasedon the Gauss

method usedto estimatethe thermalproperties. The advantageof this procedureover

previoustechniquesis that it allows thermalproperties,suchasthermalconductivity and

volumetric heat capacity, to be estimatedsimultaneously. The thermal propertiesare

found by minimizing an objective function containing calculated and measured

temperatures.Thelastsectiondiscussesoptimalexperimentaldesignsto beusedwith this

minimization procedurewhich provide more accurateparameterestimates. Optimal

experimental parametersto be used in thesedesignsare found by maximizing the

sensitivity of the temperatureresponsewith respectto changesin the thermalproperties.

2.1.1 Experimental Determination of the Thermal Properties of Composite Materials

Experimental methods have been one of the main areas for determining the

thermal properties of composite materials. These methods can be classified as either

steady-state or transient. Ziebland (1977) described some steady-state experiments used

to calculate the thermal conductivity that used both absolute measurements, where the

thermal conductivity is determined directly from the measured quantities, and relative

methods, in which the thermal conductivity is determined by reference to a substance of

known thermal conductivity. The absolute methods are accurate but require expensive

instrumentation and are generally time consuming and thus, expensive. One steady-state,

absolute technique frequently used is the guarded hot-plate method. In this method, the

specimen is heated by a hot metal plate attached to it and the resulting temperature is

measured at the interface to estimate the thermal conductivity (Ziebland, 1977). Although
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this methodis quite accurate,substantialtime is requiredto reachsteady-state;therefore,

the experimentis both expensiveandtime consuming.

Dickson (1973)hasalsodescribedasimplesteady-statemethodfor measuringthe

thermal conductivity of insulation materials using heat flow sensors. This method

requires the measurementof a heat flux and the temperaturedifference acrossa test

specimenof known thickness. Penn,et al. (1986)extendedthis method to composite

materialsanddevelopeda thermalconductivitymeasuringapparatusthat usesheatflow

sensors. This steady-statedevice usedsmaller samplesizesand as a result, reached

thermal equilibrium in only a few hours. In addition,Harris, et al. (1982) used a two

plateapparatusto experimentallydeterminethethermalconductivitiesof Kevlar 49 fibers

in directionsparallelandperpendicularto their lengthsasfunctionsof temperature,while

Havis, et al. (1989) experimentallyinvestigatedthe effect of fiber direction on the

effective thermalconductivity of fibrous compositematerials.

The evaluation of thermal conductivity from steady-stateexperiments is

mathematicallysimplebut frequentlylengthy;it wasfor thisreasonthattransientmethods

were developed. Onetransientmethodusedto determinethe thermal diffusivity, heat

capacity,andthermalconductivity of materialsis the laser-flashmethodwhich was first

introducedby Parker,et al. (1961). In this method,the front face of a small sampleis

subjectedto a short, radiantenergypulse. The resulting temperaturerise on the rear

surfaceof thesampleis measuredandthethermaldiffusivity is thendeterminedfrom the

time requiredfor the back surfaceto reachonehalf of the maximum temperaturerise.

This canbe mathematicallyexpressedas
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KL 2
cx = (2.1)

where K is the constant corresponding to one-half of the maximum temperature rise, L

is the sample thickness, and tl,= is the time taken for the back surface to reach one-half

of the maximum temperature rise. The heat capacity is found from the maximum

temperature rise of the specimen, and the thermal conductivity is then calculated from the

product of the thermal diffusivity, heat capacity, and density (k=_pcp). The advantage

of this technique over steady-state methods is that smaller sample sizes and shorter

experimental durations could be used. Taylor, et al. (1985) studied the applicability of

the laser-flash technique for measuring the thermal diffusivity of fiber-reinforced

composites and found that the technique is appropriate for examining the transient heat

flow in these materials.

Lee and Taylor (1975) used the laser-flash method along with an absolute method

to directly measure the thermal diffusivity of graphite/carbon fiber in unidirectionaUy

fiber-reinforced composites. The thermal diffusivity of graphite fiber-reinforced

composites (Morganite II and Thronal 50 S) was also calculated from the effective

thermal conductivity of composite samples measured by an absolute method. Taylor and

Kelsic (1986) also used the laser-flash method to measure the thermal diffusivity of

unidirectional fiber-reinforced composites. They then investigated the effects of the

thermal conductivity ratio, fiber fraction, fiber orientation, and specimen length on the

thermal diffusivity. Their results indicated that the fiber-matrix thermal conductivity ratio

9



was the major factor governing the thermal behavior followed by the fiber volume

fraction. In addition,thethermaldiffusivity of bothsilicaandcarbonfiber-phenolicresin

compositeswas measuredasa function of temperatureusing the laser-flashtechnique

(Mottram andTaylor, 1987a).This work wasextended(1987b)andthe effectivethermal

conductivityparallelandperpendicularto thefiber axiswascalculatedusingspecificheat

and densitydata.

The compositemethodwasusedby Brennan,et al. (1982)to measurethethermal

conductivity anddiffusivity of siliconcarbidefibers. This methodconsistsof measuring

the thermal diffusivity of the compositeand the matrix itself (without the fibers) using

the laser-flashtechnique. From the definition of thermal diffusivity and the Rule-of-

Mixtures (discussedin the next section),the thermalpropertiesof the fiber can thenbe

determined. It wasfoundthattheaccuracyof thethermalconductivityvaluesdetermined

for the fibers could be increasedby usinga matrix materialwith a thermalconductivity

asclose aspossibleto that of the fibers. Furthermore,for this methodto yield reliable

data, it is essentialthat the scaleof the microstructureand the size of the composite

samplebehaveasa continuumin its transientresponse(Brennan,et al., 1982).

The laser-flashmethodalso servedasthe basisfor the techniquesdevelopedby

Welsh, et al. (1987, 1990). In thesestudies,a pulsedheat flux was imposedon the

surfaceof a material and the resulting thermalresponseat the samesurfacewas then

recorded. This method differs from the traditional laser-flash method in that the

temperatureresponseis observedat theheatedsurfaceratherthanon the surfaceopposite

to the flux. One disadvantageof this method is that the heat capacity and thermal
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conductivity cannot be estimatedindependently,only the thermal diffusivity can be

determined.

In addition, Fukai, et al. (1991) also conductedtransient experimentsusing a

periodichot-wire heatingmethodto simultaneouslyestimatethethermalconductivity and

diffusivity. In this method,thethermalconductivityanddiffusivity weredeterminedfrom

theamplitudeandphaselag of thetemperatureresponse.Thecalculatedpropertiesagree

well with thosemeasuredby conventionalmethods.Beck andA1-Araji (1974)alsoused

a transientexperiment to estimatethermal conductivity and volumetric heat capacity

independently.

2.1.2 Mathematical Determination of the Thermal Properties of Composite Materials

Mathematical models that are functions of the components of a composite have

also been used to determine the effective thermal properties, particularly thermal

conductivity. These models are based on the original theories by Maxwell and Rayleigh

(Hasselman and Johnson, 1987), with the effective properties being direct functions of the

thermal properties of the constituents, namely the fiber and the matrix. Therefore, it is

assumed that the thermal properties of the matrix and fiber are known, along with the

void fraction of the fibers. Typically, results of the mathematical model approach are

expressed as the ratio of the effective conductivity of the composite to the matrix

conductivity. This ratio depends on the ratio of the volume of the fiber to the total

volume and the fiber-matrix conductivity ratio (Han and Cosner, 1981). Hasselman

(1987) also found that if an interracial thermal barrier resistance was present in a
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compositesystem,the effective thermal conductivitynot only dependson the volume

fraction of the fibers but alsoon the fiber size.

Onemathematicalmodel,knownastheRule-of-Mixtures,to describetheeffective

thermal conductivity (ke#)of a compositewith heat flow parallel to the axis of the fiber

is given by

k_, = kyt + (1 - V/)k, (2.2)

where/9 is the thermal conductivity of the fibers, km is the thermal conductivity of the

matrix, and V/is the fiber volume fraction.

A unit-cell approach was presented by Ziebland (1977) to describe the thermal

conductivity of a composite perpendicular to the fiber axis; this can be mathematically

expressed as

k,, - k.kf (2.3)
k,,Vf + (1 - Vi)k s

The Rule-of-Mixtures has also been used to calculate the effective thermal

diffusivity (Taylor and Kelsic, 1986).

V_k_, + V k (2.4)
% : V/pc)/+ V.(pc),

Here, V. is the matrix volume fraction and (pc)/and (pc). are the volumetric heat

capacities of the fiber and matrix, respectively.

As indicated by Progelhof, et al. (1976), none of the correlations developed

accurately predict the thermal properties of all types of composites. A review of

additional models used to predict the thermal conductivity of composite systems is given
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by Progelhof,et al. (1976). BeranandSilnutzer(1971)presentedupperandlower bounds

for the effective thermal conductivity of a fiber-reinforced composite in terms of volume

fractions and a geometric factor. They found that the effective thermal conductivity could

be significantly increased by changing the packing geometry.

In addition to the analytical models used to estimate thermal properties, numerical

methods have also been incorporated. Havis, et al. (1989) developed a numerical model

using the finite difference method that calculated the effective thermal conductivity of

aligned fiber composites when the fiber to matrix conductivity ratio was greater than one.

James and Harrison (1992) extended this finite difference method to enable the calculation

of the temperature distribution and effective thermal conductivity in composite materials

made from anisotropic materials. The standard finite difference equations were modified

on a node-by-node basis to take into account anisotropy by local re-orientation of the grid.

A finite difference method has also been used by James and Keen (1985) to calculate the

thermal conductivity of uniaxial fiber composites. The effective thermal conductivity was

then found from the fiber-matrix ratio for a range of fiber volume fractions. This finite

difference approach was modified by James, et al. (1987) to calculate the transverse

thermal conductivity of continuous fiber composites in which the fibers can be at any

angle to the faces of the sample.

In addition to the finite difference approach, finite elements has also been used to

predict thermal properties.

Han and Cosner (1981)

composites for two

A finite element analysis of a unit-cell approach was used by

to measure the effective thermal conductivity of fibrous

different geometrical arrangements of the fibers, rectangular and
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staggered. Their analysis assumedprior knowledge of the geometry and thermal

conductivities of the compositeconstituents. Veyret, et al. (1993) also used a finite

element formulation to determinethe effective thermal conductivity of a composite

materialusing the Laplaceequation.

Other methodshavealso beenusedto determinethermal properties. One such

methodis basedon the analogybetweenthe responseof a unidirectionalcompositeto

longitudinal shearloadingand to transverseheattransfer(SpringerandTsal, 1967). In

this approach,thethermalconductivitiesof unidirectionalcompositeswere predictedby

replacingthe compositestiffnesswith the thermalconductivity and the shearmodulus

ratio with the thermal conductivityratio of the componentsin the numerical solutions

obtained for the shearloading problem. Ishikawa (1980) used a method that was

equivalent to that used by Springer and Tsai. His method was again basedon the

longitudinal shearproblemand measuredthe thermal conductivities of unidirectional,

carbon-epoxycompositesystemsusing an apparatusbasedon the infra-red radiation

method. These analytical resultswere obtainedusing a Fourier series analysisand

required knowledge of the thermal conductivity of the matrix and the fiber volume

fraction.

Another techniquepresentedby Behrens(1968)usedthe methodof long waves

to obtain the averagethermalconductivity. By calculatingthe thermal wavesdamping

coefficients in the principal directionsof the medium, Behrens was able to develop

explicit expressionsfor the averagethermalconductivity. In addition,Mottram (1992)

developeddesigncharts to estimatethe effective longitudinal and transversethermal
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conductivitiesof continuouscompositesusingonly the fiber andmatrix properties.

2.2 Minimization Methods Used for the Estimation of Thermal Properties

An alternate procedure for estimating the thermal properties of composite materials

is to use a minimization technique. One minimization technique frequently used is the

Gauss linearization method. This is an iterative procedure that involves the minimization

of the least squares function. Beck (1963) was the first to use this minimization

procedure to estimate thermal properties, namely thermal diffusivity.

2.2.1 Gauss Linearization Method

The Gauss Linearization method, which is based on the least squares function, is

one of the more popular estimation methods used. This method not only allows for the

simultaneous estimation of the thermal properties, but also enables validation of the

transient heat conduction equation. A least squares function, as given by Beck and

s -- [Y - -

Arnold (1977), is

(2.5)

where Y is a vector containing measured temperatures, T(.__.) is a vector containing

calculated temperatures, and 13is the true parameter vector. Here, the thermal properties

are found by minimizing the square of the difference between the measured temperatures

and the calculated temperatures. For continuous, transient temperature measurements, the
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sum of squaresfunction is minimized with respectto the parametersusing the Taylor

seriesapproach.This is doneby differentiatingS with respect to 13, setting the resulting

equation equal to zero, and then solving for b, the estimated parameter vector for _.. This

method, as described by Beck and Arnold (1977), is one of the simplest and most

effective methods for seeking minima which are reasonably well-defined provided that

the initial estimates are in the general region of the minimum. However, as explained by

Box and Kanemasu (1972), if poor initial estimates for the parameters are used or severe

non-linearity in the model exists, this method may cause large oscillations to occur from

one iteration to another which leads to non-convergence of the estimates. In an attempt

to improve the Gauss method, Box and Kanemasu (1972) modified it by changing the

step size used in seeking the minimum. However, this method still did not include a

check that the sum of squares function, S, decreased from iteration to iteration. Bard

(1970) modified the Box-Kanemasu method to include this check; if the function was not

decreasing, the step size is reduced by one-half.

The Gauss estimation procedure was used by Beck when he determined the

thermal conductivity and specific heat of nickel simultaneously from transient temperature

measurements (1966a) and the thermal contact conductance for both steady-state and

transient conditions with a periodic contact (1988). Scott and Beck (1992a) also used this

method to simultaneously estimate the thermal conductivity and volumetric heat capacity

of carbon composites as functions of temperature and fiber orientation. They found that

the thermal properties increased with temperature over the range studied and different

stacking orientations resulted in significantly different thermal conductivity values. This

16



methodwasalsousedby ScottandBeck (1992b)to developanestimationmethodology

for thermoset composite materials during curing, and by Xu and Bao (1990) to

simultaneouslyestimatethermalconductivityanddiffusivity.

Loh andBeck (1991)performeda two-dimensionalanalysisusingthis estimation

procedureto simultaneouslydeterminetheeffectivethermalconductivitiesof anisotropic

thermosetcarboncompositesparallelandperpendicularto thefiber axis. Theyfoundthat

the conductivity parallel to the fibers is aboutseventimeshigher than transverseto the

fibers. In addition,Jurkowski,et al. (1992)usedthis methodto simultaneouslyestimate

the thermal conductivity and thermalcontactresistance,as did Gamier,et al. (1992) to

simultaneouslyestimate thermal conductivity and volumetric heat capacity without

internal temperaturemeasurements.Instead,temperaturemeasurementswere madewith

thin resistancethermometersandthermocouples.Usingfmite differencesto describethe

heat transfer model, Pfahl and Mitchel (1970) used this minimization technique to

estimatesix thermalpropertiesof a charringcarbon-phenolicmaterial. The calculated

propertyvalueswereshownto bein goodagreementwith valuesfrom conventionaltests.

2.3 Optimal Experimental Designs

Reliable estimation of thermal properties is extremely important in the utilization

of composite materials. The accuracy of these estimates can be increased if the

experiments are designed carefully. A carefully designed experiment is one in which

there is minimum correlation between the estimated properties, as well as maximum
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sensitivity of the measuredexperimentalvariablesto changesin the propertiesbeing

estimated(BeckandArnold, 1977). To createsuchoptimalexperimentaldesigns,optimal

experimentalparametersshouldfirst be determined.Many criteria have beenproposed

for the designof optimalexperiments.BeckandArnold (1977)havelisted someof these

criteria that are all in terms of the product of the sensitivity coefficients and their

transpose(XrX). Thesecoefficientsarethe derivativeof temperaturewith respectto the

parametersbeing estimated. The proposedcriteria are (1) maximization of the

determinantof XrX, • (2) maximization of the minimum eigenvalue of XrX, and (3)

maximization of the trace of XrX. The first method was chosen in this study because it

has the effect of minimizing the confidence intervals of the resulting estimates.

This optimization method was used by Beck to determine the optimal experiments

for the simultaneous estimation of thermal conductivity and specific heat (1969) and to

determine the optimal transient experimental design for estimating the thermal contact

conductance (1966b). Taktak, et al. (1991) also used this technique to determine the

optimal heating time of an applied heat flux, optimal number of temperature sensors, and

the optimal temperature sensor location for the estimation of thermal conductivity and

volumetric heat capacity of a semi-infinite and a fmite thickness composite material.

As explained, several methods for estimating the thermal properties of composite

materials have been proposed. These include both experimental methods and the use of

mathematical models. The procedure used in this study to estimate the thermal properties

is a modification of the Gauss Linearization method discussed in Section 2.2.1. This

method was chosen because it allows for the effective thermal conductivity and effective
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volumetricheatcapacityto beestimatedsimultaneously.Also, whenusingthis technique,

optimal experimentscanbe designedresultingin more accurateparameterestimates.
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Chapter 3

Theoretical Analysis

In this chapter, the theoretical development used to determine the optimal

experimental designs for both isotropic and anisotropic composite materials is presented.

The minimization procedure used to estimate the effective thermal conductivity

perpendicular to the fiber axis and the effective volumetric heat capacity of a carbon

fiber-epoxy matrix composite is also discussed. Recall that this estimation procedure

requires both experimental and calculated temperatures. In this study, both exact

analytical temperature solutions and numerical temperature solutions were obtained, with

the two results being compared to determine the accuracy of the numerical results. The

numerical solutions were calculated using a f'mite element program called Engineering

Analysis Language (EAL, Whetstone, 1983). This finite element software was utilized

because of the need for future analyses of complex structures, typical in aerospace

components, for which exact solutions are either complicated or unavailable.

The first section of this chapter focuses on the mathematical models used to

describe one-dimensional (isotropic) and two-dimensional (anisotropic) heat conduction
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processes. The secondsection describesthe mathematical details of the parameter

estimation techniqueused in both the exact and numerical analysesto estimate the

thermal properties. Note that in both cases,the thermal propertiesestimatedwere the

effectivepropertiesof thecomposite,not of the individual fiber andmatrix components.

In the final section, the mathematicalcriterion used to design optimal experiments,

resulting in greateraccuracyof thethermalproperties,is discussed.

3.1 Mathematical Models Used in Estimating the Thermal Properties of

Composite Materials

The formulation of a mathematical model is based on the experimental system

being analyzed. In this investigation, formulating mathematical models, either exact or

numerical, to describe the conductive heat transfer occurring within the composite sample

will allow for the temperature distribution to be calculated. This distribution is required

for the estimation of the thermal properties. As mentioned, both one-dimensional and

two-dimensional heat conduction analyses have been conducted. The mathematical

formulation behind both are defined in the following two subsections.

3.1.1 One-Dimensional Analysis - Isotropic Composite Material

For the isotropic situation, one-dimensional heat conduction through a carbon-

epoxy composite was investigated. Note that this isotropic situation is equivalent to

analyzing the properties in one direction of an anisotropic composite, as was the case in
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this study. The samplesusedconsistedof a thin, flat disk with anaspectratio suchthat

the two-dimensionaleffectsat the edgescan be ignored. One planeboundaryhad an

imposedheat flux perpendicularto the fiber axis, and a known, constant temperature

existed at the second boundary, as shown in Fig. 3.1. Since composite materials tend to

have low thermal conductivities in directions perpendicular to the fibers, this isothermal

boundary condition is readily available. The heat flux boundary condition is required for

the independent estimation of the thermal properties. This requirement occurs because

this type of boundary condition introduces a new equation into the model which contains

only the thermal conductivity and not the volumetric heat capacity. This equation is

known as Fourier's Law and is given by

_T
qx " -k,,-, ._-a--- (3.1)

_ OX

where qx is the applied heat flux. If this boundary condition was not used, and instead,

a constant temperature or insulated condition was used, then only the thermal dfffusivity

(k/pcp) could be estimated.

The formulation to describe this problem can be found from an energy balance and

is expressed as

0 <x<L t>0 (3.2)

where T is temperature, k,,.q and x are the effective thermal conductivity and position,

respectively, in the direction of heat transfer, C,gis the effective volumetric heat capacity
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Figure 3.1. Experimental Set-Up for the Estimation of the Effective Thermal

Conductivity and Volumetric Heat Capacity of an Isotropic Material.
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(or product of density and specific heat), and t is time. The heat flux and constant

temperature boundary and initial conditions can be described as

_T

-k_-e:-_0x =qx x=0 0<t<t h

= 0 X = 0 t > th (3.3a,b)

T(x,t) = T x = _ t > 0 (3.4)

T(x,t) -- T, 0 _ x _< L t -- 0 (3.5)

where th is the time that the heat flux is applied m the sample. After this time, the

boundary condition becomes insulated, as seen by Eqs. (3.3a,b). The heat flux, qx, the

temperature at x = L x (To.x), and the initial temperature, Tj, are assumed to be known

without errors. Note that two solutions were required for this analytical problem; one

while the heat flux was applied and one after the duration of the heat flux. Also, since

the experiments were conducted at room temperature, it was assumed that the temperature

at x = L x was equal to the initial temperature; i.e. To,x = T_. Using these assumptions, the

exact solutions to describe the temperature distributions were obtained using Green's

function (Beck, et al., 1992). The Green's function required for this solution is given by

where 13, is an eigenvalue represented by

(3.6)

(3.7)
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(Beck, et al., 1992).

solvedfor, resulting in the following:

q_Lx [1 x
r(x,t) = r +_ -_-

for 0 < t < th, and

Using Eq. (3.6), the one-dimensional temperature distribution was

exit

ft2k t 1cos_/xp_ exp-_nx-J
T(x,t) = To _ 2_ _._1__ nl _ Lx) 'e_Lx J C'e21Lx_

for t > th.

(3.8)

(3.9)

The temperature solution was also obtained numerically from the finite element

software, EAL, using an implicit transient analysis. In EAL, the weighted residual

method is used to derive the implicit time integration equations. During each time step,

the temperature vector is approximated by

(C + AtK)T_+ 1 = (C - AtK)T i + FAt + F'At 2 (3.10)

where T i is the temperature vector at time 6, T_+I is the temperature vector at time 6+1, At

is the time step size, C is the capacitance matrix, K is the stiffness matrix, and F is the

matrix containing the boundary conditions. (Whetstone, 1983). Again, a numerical

approach was utilized for the future need to analyze complex structures which do not

have exact solutions available.

3.1.2 Two-Dimensional Analysis - Anisotropic Composite Material

The two-dimensional analysis is similar to the one-dimensional analysis, only now,
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two-dimensionalheatconductionthroughananisotropiccompositesampleis considered.

Two different experimentalconfigurationswereusedin this analysis. The first consists

of an imposedheat flux perpendicularto the fiber axis over a portion of oneboundary

(with the remainderof the boundaryinsulated)andknown constanttemperaturesat the

remainingthreeboundaries,asshownin Fig. 3.2. The secondconfiguration alsohasa

heat flux imposedover a portion of oneboundary,only now, the boundaryoppositeto

the heatflux is maintainedata constanttemperature,while theremainingtwo boundaries

are insulated,as shownin Fig. 3.3. For both experimentalassemblies,the heat flux

boundary condition will allow for the determinationof thermal conductivity in two

directions. However, the actualestimationof thesethermal conductivities will not be

performedin this study;only theexperimentaldesignsrequiredfor this estimationprocess

will be analyzed(Section3.3).

The temperaturedistribution within the material for both configurationscan be

determinedfrom conservationof energy

0<x</_,_ 0<y<Ly t>0 (3.11)

where, in this case, ky.,1r and y are the effective thermal conductivity and position,

respectively, perpendicular to the direction of heat transfer. The temperature solutions

obtained for both configurations are discussed in the following two subsections.
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Figure 3.2. Experimental Set-up Used for Configuration 1 in the Estimation of the

Effective Thermal Conductivities in Two Orthogonal Planes.
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Figure 3.3. Experimental Set-up Used for Configuration 2 in the Estimation of the

Effective Thermal Conductivities in Two Orthogonal Planes.
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3.1.2.1 Configuration 1 - Isothermal Boundary Conditions

The heat flux and isothermal boundary conditions and the initial temperature

condition for Configuration 1 (Fig. 3.2) can be described as

_T

-k___-_-x = q_ x -- 0 0 < y < Lp, 1 0 < t < I h

= 0 x = 0 0 < y < Lpa t > th (3.12a,b)

_gT
-- 0 x -- 0 L_ <y <L t> 0 (3.13)

_x ' Y

T(x,y,t) = To_, x = L 0 < y < L t > 0 (3.14)

T(x,y,t) = To,y1 0 < x < L y -- 0 t > 0 (3.15)

T(x,y,t) = To,y2 0 < x < L y "- Ly t > 0 (3.16)

T(x,y,t) -'- T_ 0 < x < L 0 < y < Ly t -- 0 (3.17)

where qx is the applied heat flux, To,x, To,y1, and To,y2 are the known temperature boundary

conditions, Lx is the thickness of the plate in the x direction, Ly is the thickness of the

plate in the y direction,/-,a is the portion of the plate where the heat flux is imposed, and

T_ is the initial temperature. The specific value for Lea will be found using the

optimization procedure discussed in Section 3 of this chapter. Note that once again, two

solutions are required for this analytical case; one while the heat flux is applied and one

after the duration of the heat flux. Also, since the experiments were again conducted at

room temperature, it is assumed that To,x = To,y_ = To,y2 = Ti. Using these assumptions, the

solutions to describe the temperature distribution within the composite sample were
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obtainedusing Green'sfunctions. For the two-dimensionalcase,two Green'sfunctions

are requiredfor the temperaturesolution;one for both the x and y direction boundary

conditions. The Green's function for the heat transfer along the x axis is provided in F-xl.

(3.6), and the Green's function along the y axis is given by (Beck, et al., 1992).

_,,y,_,:_:_sin(_Y/si_')explm_"_'_'_/
_,"" t _,J t _, J t" _YC'ss ,j (3.18)

where 1% is the effective thermal conductivity ratio, (ky.¢lkx__). Using these Green's

functions, the temperature solutions for Configuration 1 are represented by

T(x'y't) -- To_ + k_e_.l.. ,4qxL_-_si_m_Y]cos('.x][1 _tLy ) tL_ ) c°s{'m_'_Lyl"" 1

•( )I1_exp<-A  l
for 0 < t < th, and

1T(x,y,t) = T + _..._,_,,_

for t > th, where

" l--_l [exp[-A(t-th)] - exp(-At)]

(3.19)

(3.20)

t 2k /m 2_ ky_,_, + _;_ (3.21)

A= L_Cy Lj, C_y)

B = m21_2L_K,y + _ (3.22)
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andLxy is the ratio of the composite dimensions (L_L,y).

3.1.2.2 Configuration 2 - Isothermal and Insulated Boundary Conditions

The heat flux and isothermal boundary conditions and the initial temperature

condition for Configuration 2 (Fig. 3.3) can be described as

_T

-_-_-_x -- q_ x -- 0 0 <y <Lp, 2 0 < t < tn

-- 0 x -- 0 0 < y < Lp,2 t > th (3.23a,b)

igT
m =0 x---0 Lp_ <y <L t> 0 (3.24)Ox Y

T(x,y,t) -- To,_ x -- L 0 < y < L t > 0 (3.25)

OT
-'- 0 0 <x<L y -'-0 t> 0 (3.26)

OT
-- 0 0 <x<L y --Ly t > 0 (3.27)

T(x,y,t) -- T i 0 < x < L 0 < y < Ly t -- 0 (3.28)

where Lp, 2 is the portion of the plate where the heat flux is imposed. Again, the specific

value for Lv,2 will be found using the optimization procedure discussed in Section 3 of this

chapter. Due to the different boundary conditions used in the two configurations, L_, 2 will

be different than L_,_ (the heat flux position calculated for Configuration 1). Since the

experiments were again conducted at room temperature, the same assumption was used

as for Configuration 1; i.e., To,x = T_. The solutions to describe the temperature

distribution within the composite sample were then obtained using Green's functions.

Two Green's functions are again required for this configuration, one for both the x and

y direction boundary conditions. The Green's function along the x axis is provided in Eq.
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(3.6), andthe Green's function along they axis is given by (Beck, et al., 1992)

Gy(y,t lY',X) =

Using these Green's

represented by

T(x,y,t) = To;̀ +

1 + 2_ cos(mltY/ /_yY / / expl -m 2rC2ky-e_(t"z)/]
cos LyZC_# (3.29)--' t ,J t

functions, the temperature solutions for Configuration 2 are

2qA  -exp -Ct l

+ 4qx(t)L_ DD c°s(_"Xlc°s(mrCYlsi_'m_Lp;2'l(-'_)[1-tLx)t Ly J t Ly J exp(-At)]

for 0 < t < th, and

2q_LxL_y2,D l_Lcoslf3.Xl[et-C't-','l _ e(-CO]
T(x,y,t) : To,, + kx_,_, [3_ t L J

(3.30)

+ 4_xD _ cos(l].x / cos(ratty/sin{m_io.2} (1)[et-a(, -,)] _ e(_ao] (3.31)_<- t ,j t ,j
for t > th, where A and B are given by Eqs. (3.21) and (3.22), respectively, and C is

represented by

(3.32)

2

c = ILk,_,_,
#%

In determining these temperature distributions as functions of time, one should note that

there are steady state terms which need to be calculated only once since they are time
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invariant. This is importantsincetheseseriesareslow to convergeandrequirehundreds

of terms,whereasthe time varyingtermsof thesummationconvergeratherquickly. An

alternatesolution methodinvolves the useof time partitioning (Beck, et al., 1992). In

this method,the solution is partitionedinto two regionsand both large-timeand small-

time Green's functionsareusedto find thetemperature.For example,at early times,the

solution is the sameasthat for a semi-infinitebody, andtherefore,the overall solution

canbe divided up into early andsteadystatesolutions.

3.2 Minimization Procedure Used in Estimating the Thermal Properties

The method used to estimate the thermal properties is based on the minimization

of an objective function with respect to the unknown parameters, effective thermal

conductivity and effective volumetric heat capacity. This procedure is called the Gauss

method and allows for the simultaneous estimation of the thermal properties. A

modification of the Gauss method that allows for nonlinearities in the model to exist is

the Box-Kanemasu method, which is utilized in this investigation. In this method, the

objective function used is the least-squares function, S, and is given by

S = [Y - T(__)] r [r - T(_)] (3.33)

(Beck and Arnold, 1977). Here, Y is the measured temperature vector, T(.__) is the

calculated temperature vector found using a transient mathematical model (as given in

Eqs. (3.8-9), (3.19-20), and (3.30-31)) and the parameter estimates, and B is the exact
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parametervector thatcontainstheunknownthermalproperties. The objectivefunction,

S, is minimized with respect to the unknown parameters, 13. This is done by

differentiating S with respect to 13and setting the resulting equation equal to zero, giving

V_.S = 2[-xr(_.)] [Y - T(,_)] -'-0 (3.34)

(Beck and Arnold, 1977). Here, the sensitivity coefficient matrix, X(_ is defined as

X(__.) -- [V_Tr(_)] r (3.35)

These coefficients are the derivatives of temperature with respect to the parameters being

estimated and represent the sensitivity of the temperature response with respect to changes

in the unknown parameters. In order for the parameters to be estimated simultaneously,

the determinant of the sensitivity coefficients and their transpose, Ixrx I, cannot equal

zero. That is, any one column of X cannot be expressed as a linear combination of any

other column.

Because the heat conduction process in this study is a non-linear problem, the

estimator, 13, cannot easily be solved for. Therefore, two approximations are used in Eq.

(3.34) to prevent this difficulty; (1) Replace X(_ by X(b), where b is an estimate of 13,

and (2) Use the first two terms of a Taylor series for T(_ about b to approximate T(13)

(Beck and Arnold, 1977). Using these approximations and implementing an iterative

scheme, Eq. (3.34) can be solved for b, the estimated parameter vector, resulting in the

following expression for b(k÷l):

b_k+1)= b_k>+ p_k)[X_k)(y _ /_k))] (3.36)

where
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l_k) = [,_k)r_k)]-I (3.37)

This is known as the Gauss linearization equation Here, k is the iteration number, b (k+l)

is the new parameter estimate, b tk: is the estimate at the previous iteration, and T(b) tk)

contains temperatures calculated using b tk).

For a nonlinear problem, Eq. (3.36) is altered and becomes

= b (k) (3.38)b (k+l) b (k) + h (k+l)Ag

where

A b(k) (y )] (3.39)

and h (k+l) is a scalar interpolation function. To use this nonlinear estimation procedure,

an initial estimate, b _°_, is required. This estimate is then used to calculate T °) and X _°)

which are used to obtain the improved parameter vector, b (1). This procedure continues

until all parameters in b do not change significantly (Beck and Arnold, 1977).

Equation (3.38) represents the Box-Kanemasu method which is a modification of

the Gauss method. In the Box-Kanemasu method, the sum of squares, S, is approximated

at each iteration by a quadratic function in h. The minimum S is located where the

derivative of S with respect to h is equal to zero, or at an h value of (Beck and Arnold,

1977)

h (k+l) _ G (k)O_2[S(k) - S (k) + 2G 0')¢x]-1 (3.40)

where

(3.41)
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The parameterfor o_is initially setequal to one andSJ k) and So(k) are the values of S at

tx and zero, respectively. If S_ (k) is not less than So(k), t_ is reduced by one-half and the

inequality is checked again. This is a modification over the original Box-Kanemasu

method. A flow chart illustrating the modified Box-Kanemasu estimation procedure, as

presented by Beck and Arnold (1977), is shown in Fig. 3.4. Note that if the investigation

requires o_ to become less than 0.01, the calculations are terminated. One reason why this

may occur is that correlation (or linear dependence) between the sensitivity coefficients

exists, causing the sum of squares function not to have a unique minimum. It is therefore

very important to calculate and analyze the sensitivity coefficients for possible correlation

to ensure reliable parameter estimates.

A parameter estimation program was written using the modified Box-Kanemasu

method and is called MODBOX; this program is based on the original program NLINA,

by Beck (1993). This program uses sequential in-time estimation to calculate the

parameters at each time step. The exact mathematical models given in Eqs. (3.8) and

(3.9) were used in this program as well as the derived sensitivity coefficients, allowing

for the estimation of the effective thermal conductivity perpendicular to the fibers and the

effective volumetric heat capacity of a composite consisting of IM7 graphite fibers and

a Bismaleimide epoxy matrix. The modified Box-Kanemasu method was also

implemented into EAL where the temperature solution was obtained numerically. Again,

the same effective thermal properties were estimated. The advantage of this sequential

estimation technique is that it allows the user to observe the effects of additional data on

the sequential estimates and study the validity of the proposed mathematical model and
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Figure 3.4 Flow Chart for the Modified Box-Kanemasu Estimation Procedure
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experimentaldesign. Ideally, at the conclusionof an experiment,any additional data

shouldnot affect the parameterestimates.

3.3 Optimal Experimental Designs Used in Estimating Thermal Properties of

Composite Materials

Since the Gauss method requires experimental temperatures of the composite

system to be measured, the accuracy of the thermal properties estimated can be greatly

increased if these experiments are designed carefully. To create such optimal

experimental designs, optimal experimental parameters must first be determined. The

focus of this section is on the criterion used in obtaining these optimal parameters. For

the one-dimensional analysis, the experimental design consisted of a thin plate with an

imposed heat flux applied for a finite duration at one boundary and a known, constant

temperature at the second boundary. For this design, the optimal experimental parameters

that were determined are the heating time, temperature sensor location, and total

experimental time.

For the two-dimensional heat conduction analysis, two different configurations

were used, allowing for the effective thermal conductivity in two directions and the

effective volumetric heat capacity to be determined simultaneously. Both designs had a

heat flux imposed over a portion of one boundary, with the remainder of the boundary

insulated. In addition, Configuration 1 had known, constant temperatures at the remaining

three boundaries, while Configuration 2 had a constant temperature at the boundary
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opposite to the heat flux, and insulated conditions at the remaining two boundaries.

Therefore, in addition to the optimal experimentalparametersfound for the one-

dimensionalcase,the optimal position of the heat flux was also determinedfor both

configurationsusedin the two-dimensionalcase. Note, however,that this optimal heat

flux location will not be the samefor both configurationsdueto the different boundary

conditionsused.

3.3.1 Design Criterion Used for Optimal Experimental Designs

Many criterion have been proposed for the design of optimum experiments. As

mentioned previously, the sensitivity coefficients indicate the sensitivity of temperature

to changes in the thermal properties and optimal experiments are those which maximize

these coefficients for each property. Therefore, the criterion chosen for this analysis is

the maximization of the determinant (D +) of X*rX +, which contains the product of the

dimensionless sensitivity coefficients and their transpose (Beck and Arnold, 1977). This

criterion is subject to a maximum temperature rise, a fixed number of measurements, and

the following seven standard statistical assumptions: additive, zero mean, constant

variance, uncorrelated normal errors with errorless independent variables, and no prior

information. It is recommended by Beck and Arnold because it has the effect of

minimizing the confidence intervals of the resulting parameter estimates. Note, it was

desired to perform the optimization procedure in non-dimensional terms so the results

could be applicable for any material, not just composite materials.

For the one-dimensional analysis where two properties are estimated (kx.w and C,g),
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I X+TX+ I is a 2 x 2 matrix. Therefore, the dimensionless determinant is given as

4-

--al:d2;- (dl )2 (3.42a,b)

where dll+, d12+, and dJ are found from (Beck and Arnold, 1977)

d_j-- Mr; p_l
£,; ÷ . .Xi (t )Xj (t *) dt÷ (3.43)

In this equation, M is the number of temperature sensors used and t+, t_, and T,_ + are

defined as

(T.:To) t" 4- k.,],,= , = _ , tN = (3.44a-c)
2 C 2

where tt¢ is the total experimental time, T,_ is the maximum temperature reached between

the start and end of the experiment, and To,x is the surface (and in this case, initial)

temperature. It should be noted that this def'mition of T,_ + was used to verify previous

optimal experimental parameter results by Taktak, et al. (1991) and is not the best

representative choice.

The integral in Eq. (3.43) was calculated numerically, being approximated by a

summation. From Eq. (3.43), it is evident that the matrix in Eq. (3.42a) is symmetric;

i.e., d_ + = d2_+. This simplifies the problem by decreasing the number of equations that

must be numerically integrated.

When extending this analysis to the two-dimensional case, three properties (kx._

ky_ez and Cez) can now be estimated simultaneously for both configurations. Therefore,

39



[x'-Tx ÷ I is a 3 x 3 symmetric matrix and the dimensionless determinant is given by

D2:o- 4; 4_ 4;
÷ ÷d,3 d_; d.

D2*-, = d,1(_*2d3_ - d2_) - d,_(dl_d3*3 - d,_d_3) ÷ d_(d_d2*3 - d,;d_) (3.45a,b)

Again, the dq ÷ values were found from Eq. (3.43), where the integral was calculated

numerically. To compare both configurations used in the two-dimensional analysis, the

value for T_ ÷ was redefined as the temperature reached at steady-state conditions. This

is a more accurate choice than the T,,_ ÷ selected for the one-dimensional design, used by

Taktak, et al. (1991), because it represents the true maximum temperature that can be

attained for the defined problem.

From Eqs. (3.42) and (3.43), it is seen that the dimensionless sensitivity

coefficients are required for this optimization procedure; these coefficients are given by

X_.,, = k.__¢ _T
qxLlk__,#/)kx_,#

x'-- %
c., qxL,/k,_,# OC,#

and

q,L l k,_,# _ky_,_

where X[ , and X ÷.. % are used in the one-dimensional

and X_ are used in the two-dimensional analysis.

(3.46)

(3.47)

(3.48)

an ysisandXL , X; ,
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3.3.2 One-Dimensional Optimal Experimental Design Formulation

In performing this optimization procedure, a mathematical model, either exact or

numerical, is required to represent the experimental process. An exact model for the one-

dimensional analysis is given by the temperature solutions in Eqs. (3.8) and (3.9). Using

the following dimensionless variables

X÷ = X t÷__ kx_egt . = kx_eSlth T + -- T-T#
' C 2 th C 2 (3.49a-d)

these temperature distributions can be expressed in dimensionless form as

T*(x,t) --- 1 -x ÷ - 2_[ 2 1 cos(13 x ÷) exp(-I_t ÷) (3.50)

for 0 < t + < th÷, and

ao

2 + +

1 cos(i]x ÷) [exp(_l]:t.) _ exp[-l_.(t -'h)]]r'(x,t) = -2]g._, (3.51)

for t+ > th+, where 13, is given by Eq. (3.7). This temperature distribution, which is

calculated using a dimensionless heating time, th+, equal to the total experimental time,

is shown in Fig. 3.5 for several x + locations.

The dimensionless sensitivity coefficients, X£., and Xc ' , were then found by

differentiating Eqs. (3.50) and (3.51) with respect to kx.,# and C,1r The effective thermal

conductivity sensitivity coefficients are given by

X£. = (x"- 1)+ 2_(..27 + t')cos(l]x÷)exp(-132.t .) (3.52)
n=l j
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for 0 < t÷ < t_÷, and

(3.53)

for t + > th÷, while the effective volumetric heat capacity sensitivity coefficients can be

expressed as

for 0 < t+ < th+, and

X ÷%= -2_ t ÷exp(-13_t ÷) cos(13 x ÷) (3.54)
n=l

n--1

for t+ > th+.

These dimensionless sensitivity coefficients are then used in the optimization procedure

to determine the maximum determinant value, as given by Eqs. (3.42) and (3.43), and the

corresponding optimal experimental parameters. Viewing these coefficients as functions

of experimental time will also give insight into the experimental design, as will be shown

in Chapter 5. The sensitivity coefficients in dimensional form are also required in the

program, MODBOX, to estimate the effective thermal conductivity and effective

volumetric heat capacity simultaneously, as shown in Eqs. (3.36) and (3.37).

3.3.3 Two-Dimensional Optimal Experimental Design Formulation

The exact model used to describe the temperature distribution for two-dimensional

heat transfer in an anisotropic composite material is given in Eqs. (3.19) and (3.20) for
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Configuration 1 and Eqs.(3.30)and(3.31) for Configuration2. The derivedsensitivity

coefficientsfor bothconfigurationsrequiredfor theoptimizationprocedurearediscussed

in the following two subsections.

3.3.3.1 Optimal ExperimentalDesignFormulationfor Configuration1

Using the dimensionlessvariablesalreadygiven in Eq. (3.49) along with the

following non-dimensionalvariables

y+-_Y Lp+,i-_ L,i
, , -_-.., i--1,2 (3.56a,b)

Ly y

(i corresponds to the configuration number) the temperature distributions for

Configuration 1 can be expressed in dimensionless form as

T+(x +,y +,t +) = sin(m_:y ÷) cos(_x +) 1 - cos(mrcLp, l
-- n--1

" (_-----) [1- exp(-Bt ÷)] (3.57)

for 0 < F < th+, and

T+(x÷'y+'t+) =4_sin(mxy÷)c°s(_"x÷)[1-c°s(mxLe_l)]l-_ I--n_l

• [exp[-B(t ÷- th*)]- exp(-Bt ÷)] (3.58)

for t÷ > th+, where L_y (LiLy) and r_ (ky._o/kx.elr) are the dimension and effective thermal

conductivity ratios, respectively, and B is given in Eq. (3.22).

The sensitivity coefficients for all three effective parameters, thermal conductivity
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perpendicularto the fibers (kx.¢,),thermal conductivityparallel to the fibers (ky._,),and

volumetric heat capacity (Ce_,),were then calculated by differentiating the above

temperaturedistribution with respectto eachproperty. Thesensitivitycoefficientsfor the

thermal conductivity perpendicularto the fiber axisaregiven by

Xkx+.y

= 4_ _ sin(m_'Y ÷)cos(_x ÷)[ 1 - cos(mrcLe,+_)] /_B /

" [13_t+exp(-Bt÷) + (D - I)(I - exp(-Bt÷))] (3.59)

for 0 < t + < th+, and

X ÷ 4_ ÷) ÷) + (_B)
k, = -- sin(ratty cos(_x [1- cos(rare/91)]

m-1 n_l

•[(D-l)(e t-n(r-';)'- e(-nr))+ fS_t÷e(-,'',- fS_(t÷- t:)et-n(''-';)J] (3.60)

for t+ > th+ where D is equal to

D (3.61)

The dimensionless sensitivity coefficients for X% and X_,.,, were also calculated; the

solutions for 0 < t+ < th+ are given by

X%= 4_i _ sin(raTty ÷) cos(13x ÷) [1-cos(mnL,+.l)](l'_(-Bt÷exp(-B,÷)) (3.62)
n_l r, _,mB)

and
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-'- sin(mny*) cos(13_x *) [1- cos(mnLe.l) ]
m

,,1
and for t + > th+, by

(3.63)

and

= -_sin(mTcY+) C°s(_nx+) [1-c°s(mycZP_l)]l-_Ira--1 n.I

[B(t ÷- th+)exp[-B(t *-th)] - Bt +exp(-Bt+)] (3.64)

X:_.,_ m 4_ m-1 _ sin(m_'Y+)n.l c°s(l]_x +) [1- cos(mrcLe_l)]/___ )

• [D(e'-nt')-e t-n"'-t")l)+m 2_'L_Ky (t+e'-nt')-(t+- th)e t-n,t'-,,')l)] (3.65)

where B and D are given in Eqs. (3.22) and (3.61), respectively.

3.3.3.2 Optimal Experimental Design Formulation for Configuration 2

Using the dimensionless variables given in Eqs. (3.49) and (3.56), the temperature

distribution obtained for Configuration 2 (Eqs. (3.30) and (3.31)) can be expressed in

dimensionless form as

" [ 1T (x ,y ,t ÷) -- 2Le+_ 1 cos(13x ÷) 1 - e

+ cos(_x ÷) cos(mrcy ÷) sin(m_Lv_2) [ 1 - e (-Bt')]
(3.66)
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for 0 < t+ < th+, and

[eT+(x+,y +,t ÷) = 2Lp_2 _ __1 cos(_nx ÷) [-a:(r-t;)l

+4_ac°s(_nx÷)c°s(mny÷)sin(mrcLe_)(-_)[e__-_
[-n(r-t;)l _ e (-nr)]

(3.67)

for t÷ > th+.

Again, the sensitivity coefficients for all three effective parameters, thermal

conductivity perpendicular to the fibers (kx__¢), thermal conductivity parallel to the fibers

(kye#), and volumetric heat capacity (Ce#), were then calculated by differentiating the

above temperature distributions with respect to each property. The sensitivity coefficients

for the thermal conductivity perpendicular to the fiber axis are given by

X ÷ =2Le_2_cos(13x ÷) -1 ÷ 1 eeO_r)g., + + + cos(13 x÷)

" cos(mny ÷) sin(mnLp_)(_--'ffB)[(D-l)(1- e<-nr))+ _t+e(-*")] (3.68)

for 0 < t + < th÷, and

X_,---2Lp+a_cos(13 x')I___ +t')e (-_'r' -I_._ +(t'-t_) I

+ 4_m--1_ COS(_X+),,=, c°s(m/r)' ÷)sin(reteLl'a)(---_)

• [(D - 1)(e t-n(,'-,;)1 _ e,-B,')) . _t*e ,-B,', _ _2(t" - q)et-B("-t;)q

(3.69)
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for t÷ > th+. The dimensionless sensitivity coefficients for X% and X_, were also

calculated; the solutions for 0 < t+ < th÷ are given by

= -2/.,2 t+cos(l_x ÷) e (-t_:') + cos(13_x ÷)
n=l m=l n=l

(3.7o)

and

X ÷ =4_...l_COS(_X÷)Cos(mrt_y÷)sin(mrcLv+_)l___l

• [-/_1- e (-n,.)) + m 2_2L_K;yt +e (-Bt.)]

(3.71)

and for t+ > th+, by

X ÷ [ ÷c. = 2Le+.2_ cos(p: +) (t ÷ - th )e [_(v-,,')]
n---I

oo o,D

- t +e(-_._r)] + 4
m--1 n--I

[cos(13.x ÷) cos(m_y ÷) sin(m_L_z)(-_)[B(t+-t_)et-n("-"3]-Bt+e'-n")]] (3.72)

and

X ÷ =4_cos(_x÷)cos(m_y÷)sin(mrcLp_)l__lky.,_
-- n--I

+ m2n2L_(t÷e '-n'')- (t ÷- th')e t-n,,'-,;)])]
(3.73)
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whereB and D are given in Eqs. (3.22) and (3.61), respectively.

Again, as in the one-dimensional analysis, the dimensionless sensitivity coefficients

for both configurations will be used in the optimization procedure to determine the

maximum determinant and the corresponding optimal experimental parameters.
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Chapter 4

Experimental Procedures

This chapter describes the experimental procedure used to estimate the thermal

properties of a continuous IM7 graphite fiber - Bismaleimide epoxy matrix composite

material. Although optimal experiments were designed for both one-dimensional

(isotropic) and two-dimensional (anisotropic) heat conduction, only the one-dimensional

experiment was conducted, allowing for the effective thermal conductivity perpendicular

to the fibers and the effective volumetric heat capacity to be estimated simultaneously.

As discussed previously in Section 3.2, the estimation procedure used in this study

is the modified Box-Kanemasu method. Recall that when using this method, experimental

temperatures must be recorded. To estimate the thermal properties independently, the

experiments must be transient and one of the boundary conditions must be a heat flux

(Beck and Arnold, 1977). With these required conditions, the experimental assemblies

were designed accordingly. Discussed next are the experimental set-up and procedure

utilized.
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4.1 One-Dimensional Experiment for the Estimation of Thermal Properties

The experimental assembly for the one-dimensional analysis used to estimate the

thermal properties of the given composite material consists of a thin composite sample

subjected to a heat flux perpendicular to the fiber axis at one boundary and a known

constant temperature at the other boundary. Temperature measurements were then taken

at the flux boundary and were used in the estimation procedure. These experiments are

described in detail in the following subsections.

4.1.1 One-Dimensional Experimental Set-Up

The experimental design for one-dimensional heat conduction was composed of

two composite disks of approximately equal size, a resistance heater, eight thermocouples,

and two copper cylinders. The assembly was symmetrical consisting of, from the center

to the top, a thin resistance heater, two thermocouples, the composite sample, two

additional thermocouples, and a copper block. The composite sample was 4.77 cm in

diameter and 0.678 cm thick. The copper blocks, each with a height of 6.35 cm and a

diameter of 5.08 cm, were used as heat sinks to attempt to attain the constant temperature

boundary condition while the resistance heater was used to provide the heat flux boundary

condition. All of the experiments were conducted at the National Aeronautics and Space

Administration - Langley Research Center, Aircraft Structures Branch (NASA-LaRC,ASB)

using the equipment available in their testing lab. All supplies required in the experiment,

such as the resistance heater and heat sink compound, were also supplied by NASA-
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LaRC. The carbonfiber-epoxymatrix compositeswerepreparedandthe thermocouples

(TypeK) werefabricatedby NASA-LaRCpersonnel.Thedataacquisitionhardwareand

software used in taking temperature,voltage, and current measurementshad been

previously programmed. Therefore,only the assemblyof the experimentalapparatus

remainedto be completed,with the detailsgivennext.

4.1.1.1 ExperimentalSet-UpAssembly

The one-dimensionalexperimentalapparatusinvolved the following procedure:

1) Measurethethicknessanddiameterof two compositesamples(Samples1and2),

andthe height and diameterof two copperblocks.

2) Coat one surface of a copper block with a thin layer of silicon heat sink

compound. Make surethe compoundis smoothand evenly distributed. A flat

edgethe width of the sampleis usefulto apply the coatingwith.

3) Place (2) thermocoupleson top of the copperblock layeredwith the heat sink.

Thejunction shouldbe in thecenterof the samplesandthe two wires shouldbe

parallel to eachotherandequidistanceapproximately0.635cm from thecenterof

the secondaxis. To keepthe thermocouplesin place,tapethem down either to

the table or to the sidesof thesample. Be sureto numberthe thermocouplesso

that their positioncanbe recorded(seeFig. 4.1).

Coat one surfaceof Sample1 with a thin layer of silicon heat sink compound.

Again, be surethe compoundis smoothandevenly distributed. Carefully place

the compositesample(coatedsurfacedown) on top of the copperblock over the

thermocouples(seeFig. 4.2). Do not slidethe compositesampleon the block or
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Figure 4.1. Position of Thermocouples (T/C's) on Copper Block for the

One-Dimensional Experimental Design.
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Figure 4.2. Sample 1 Placed on Top of the Copper Block for the

One-Dimensional Experimental Design.
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5)

6)

7)

8)

9)

10)

11)

the thermocouples will be moved. Make sure that the contact is good.

Coat the other side of Sample 1 and again, place two thermocouples at this surface

in the same manner as discussed previously.

Apply silicon grease to the heater on one side and place it on top of Sample 1.

Be sure the heater is placed symmetrically over the sample so the same magnitude

of heat flux is being distributed (see Fig. 4.3).

Coat the exposed top surface of the heater with the heat sink compound as

before and place two more thermocouples at this surface, as described previously.

Coat Sample 2 (of approximately the same thickness as Sample 1) with silicon

grease and place it on top of the exposed heater surface, over the thermocouples.

Coat the opposite side of Sample 2, place two more thermocouples as before on

the surface, and finally, place a coated copper block over the composite sample

(see Fig. 4.4).

Wrap the exposed sides of the composite material with rope insulation. Four

pieces were used, two on each composite. If any thermocouple wire is exposed,

tuck it inside of the insulation (see Fig. 4.5).

Carefully place the stacked samples between two plates and apply pressure evenly

over the surface, taking care not to break the thermocouples. If thermocouples

break, use less pressure. (Note, pressure was applied through threaded rods which

ran through the comers of the plates).
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Figure 4.4. Final Assembly of the Experimental Apparatus for the One-Dimensional

Experimental Design with Eight Thermocouples (T/Us).
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4.1.1.2 ExperimentalProcedure

The experimentalprocedureconsistedof applying a heat flux to a composite

samplealreadyat steady-stateand thenmeasuringthe resulting temperaturesusing the

dataacquisitionsystem. The processusedfor theseexperimentsis given asfollows:

1)

2)

3)

Place the press containing the experimental set-up inside a temperature controlled

oven. Connect the thermocouple wire to leads leading to a temperature

compensator and data acquisition system. Heat the oven to the desired ambient

temperature and allow the instrumented samples to equilibrate.

Activate the data acquisition system. Turn on the heater and simultaneously record

temperature (mvolts) from thermocouples, and measured voltage and current to the

heater. Turn the heater off after a pre-determined heating time and continue

recording measurements until a pre-determined experimental time has elapsed.

If desired, the experiment can be repeated after the samples have again come to

equilibrium with the oven temperature or the oven temperature can be changed and

steps 1 and 2 can be repeated.

In these experiments, temperatures were recorded using eight Type K

thermocouples at 0.5 second intervals up to a predetermined experimental time. All

experiments were conducted at room temperature with the heater being applied for a

predetermined heating time. (These times were determined using the optimal design

criterion discussed previously). Experiments were conducted using three different voltage

57



inputs to the heater;4.9V, 6.1V,and7.3V. Theseresultedin maximumtemperaturerises

of approximately2°C, 3°C, and4.5°C,respectively,over the initial temperature.

As mentioned,a one-dimensionalheatconductionprocessthroughthe composite

sample was assumed. This assumptionmay introduce experimental error into the

problem. However, to verify the validity of this assumption,the resistanceto heat

transferwascalculatedbothparallel andperpendicularto the direction of heattransfer.

For one-dimensionalheat conductionto be assumed,the parallel resistanceshouldbe

muchsmaller than theperpendicularresistance,indicatingthat most of the heatwill be

conductedin onedirection. To calculatethe resistancein the directionof heat transfer,

whereonly conductionthroughthesampleis considered,thefollowing equationwasused:

R_o,_ = kx-,_A , (4.1)

where A, is the cross-sectional area normal to the direction of heat transfer, kx._ is the

effective thermal conductivity parallel to the direction of heat transfer and Lx is the

thickness of the sample. For the resistance perpendicular to the direction of heat transfer,

both conduction through the insulation material and convection with the air must be

considered. The convective resistance is given as

1
R -- m (4.2)

conv

where h is the convective heat transfer coefficient. As an extreme case, this resistance

was calculated using a h of 10 W/m2°C. This indicates that heat is lost through the

insulation by convection to the surrounding air. Since the experiments were conducted
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at room temperature,this h value is a good approximation for natural convection

situations, as may be the case in this experiment. A thermal conductivity of 0.05 W/m°C

was assumed for the insulation material used.

When performing these calculations, is was found that the resistance parallel to the

direction of heat transfer is 7.3 °C/W while the resistance normal to this direction is 220

°C/W. Since the perpendicular resistance is much larger than the parallel resistance, the

one-dimensional heat conduction assumption is valid.
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Chapter 5

Results and Discussion

This chapter focuses on the results obtained for the optimal experimental design

procedure for both the one-dimensional and two-dimensional analyses. In both cases, the

experimental parameters were optimized using the technique described in Section 3.3.

The thermal property estimates, effective thermal conductivity perpendicular to the fibers

and effective volumetric heat capacity, obtained for the IM7 graphite fiber - Bismaleimide

epoxy matrix composite are also discussed. These thermal properties were estimated

using both the parameter estimation program, MODBOX, which requires an exact

temperature solution and the f'mite element software, EAL, where the temperature solution

is calculated numerically. In both cases, the properties were estimated using the modified

Box-Kanemasu method described in Section 3.2.

The first and second sections of this chapter discuss the optimal experimental

results obtained for the one-dimensional analysis and the estimated thermal properties

found utilizing this design, respectively, while the last section discusses the optimal

experimental results obtained for the two-dimensional configurations.
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5.1 Results Obtained for the One-Dimensional Analysis (Isotropic Composite
Material)

The thermal properties estimated for the one-dimensional analysis include the

effective thermal conductivity perpendicular to the fiber axis, or the isotropic thermal

conductivity, and the effective volumetric heat capacity. As mentioned in Section 3.2,

measured temperatures were required for this estimation procedure; therefore, experiments

had to be conducted. The next subsections discuss the results obtained for the

optimization procedure used to determine the optimal experimental parameters utilized in

these experiments. This includes an analysis of the sensitivity coefficients and the

determination of the following experimental parameters: the heating time of the uniform

heat flux, the temperature sensor location, and the total experimental time.

5.1.1 One-Dimensional Optimal Experimental Design

The minimization procedure used in this analysis to estimate the effective thermal

properties is the Box-Kanemasu method. This method requires both measured and

experimental temperatures. The experiments used to obtain the measured temperatures

were optimized to provide more accurate property estimates. The optimization technique

selected in this study, as discussed in Section 3.3, maximizes the determinant of the

product of the dimensionless sensitivity coefficients and their transpose. Therefore, the

first step in the optimization procedure is to calculate and analyze the sensitivity

coefficients for each property. These coefficients are discussed next.
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5.1.1.1 Sensitivity CoefficientAnalysis

Thefirst stepin theoptimizationprocedurewasto calculateandplot thesensitivity

coefficients. Recall that thesecoefficientsare the derivativesof the temperaturewith

respectto the unknownthermalpropertiesandindicatethe sensitivity of the temperature

responsedue to changesin the parameters.In order for the thermal propertiesto be

independentlyand accuratelyestimated,thesecoefficientsshouldbe large in magnitude

(on the order of the temperaturerise) and linearly independent. If the sensitivity

coefficients aresmall, not enoughinformationis availablefor the estimationprocedure

and if linear dependenceexistsbetweenthem, the parameterscannotbe independently

estimated. It is important to note, however, that the sensitivity coefficients may be

linearly dependentoveronerangebut independentovera differentrange. Knowing these

rangeswill help optimize thephysicalexperiment.

The dimensionlesssensitivitycoefficientsfor the isotropic analysisaregiven by

Eqs. (3.52-55). Figures5.1 and5.2 show the dimensionlesssensitivity coefficientsfor

the effective thermal conductivity (X_) andeffective volumetric heat capacity (Xc_,),

respectively, at various positions within the composite. In Fig. 5.1, it is seen that after

a dimensionless time of approximately three, all of the coefficients converge to a constant

value. This indicates that temperature measurements taken beyond this dimensionless

time supply little additional information for the estimation of kx._ This same result also

occurs for the effective volumetric heat capacity sensitivity coefficients (Fig. 5.2). Here,

after a dimensionless time of approximately three, the coefficients converge to zero. To
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more accurately estimate Ce_ the majority of the temperature measurements should be

taken over the dimensionless time range of zero to three, where the magnitude of the

sensitivity coefficients is largest. It is apparent from these figures that the coefficients

with the largest magnitude occur at a dimensionless x ÷ (defined as x/Lx) location of zero.

This position corresponds to the heated surface in this analysis. However, it is also

evident that the X(,, have a larger magnitude than those for X% . This indicates that the

temperature data provides more information about kx._ than it does for Ce_ and therefore,

the estimates of kx._ will be more accurate than those for Ce_

It should be noted that the sensitivity coefficients in Figs. 5.1 and 5.2 were

calculated with the heat flux applied for the entire duration of the experiment. Because

the volumetric heat capacity coefficients approach zero, it suggests that a better scheme

may consist of applying the heat flux for a finite duration instead of for the entire

experimental time. This confh'ms that observing the sensitivity coefficients can give

insight into the accuracy of the experimental design.

As mentioned, if the sensitivity coefficients are linearly dependent, the thermal

properties are correlated and cannot be simultaneously estimated. One way to determine

if linear dependence exists is to plot the ratio of the sensitivity coefficients, as shown in

Fig. 5.3 for an x ÷ location of zero. In this figure, the ratio was plotted between the

dimensionless time range of zero to three. (After this range, the volumetric heat capacity

sensitivity coefficients converge to zero and the ratio becomes insignificant). If a constant

curve occurs, the coefficients are linearly dependent. However, as evident from Fig. 5.3,

65



OPTIMAL EXPERIMENTAL DESIGNS

FOR THE ESTIMATION OF THERMAL PROPERTIES

OF COMPOSITE MATERIALS

An Annual Report
for Contract No. NAG-l-1507

to

NASA Langley Research Center

Hampton, VA

by

Elaine P. Scott

Assistant Professor

and

Deborah A. Moncman

Graduate Research Assistant

Department of Mechanical Engineering

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0238

May 5, 1994



i

?e

0.020

0.018

0.016

g 0.014

"_ 0.012

0.010
ra_

o 0.008

._ 0.006

0.004

0.002

0.000

_-- (tO"= 1.o

....... (tO"= 1.5

...... (tO"=2.0

....... (tO*= 2.25

(tO"=2.5

......... (th)÷ = 3.0

(tO"= 4.0

(tO"= 5.0

I ' I '" _ I ' I I I "' ' I

\ \

\ \
\ \

\ \\

\

0

Figure 5.4.

2 3 4 5 6 7

Dimensionless Experimental Time, (tN) +

Dimensionless Determinant, D +, for Various Dimensionless Heating Times, th+, as

a Function of Total Experimental Time, t_+.



i ¸ ::i ? '?: :i:i?::

_N

0°020

0.018

_" 0.016

_ .014

.! 0.012
0.010

0.008

0.006

0.004

0.002

0.000 __ • . I _ 1 ........... t ............ I.......... I J I ,,,t .... I

0 1 2 3 4 5 6

Dimensionless Heating Time, (th) ÷

Figure 5.5. Maximum Dimensionless Determinant Curve, D,,J, Used to Determine the
Dimensionless Optimal Heating Time, t ÷

h, opt "



th -- -- (5.1)
V

For this study, the thickness of the sample, L x, was 6.78 mm. However, to determine _x,

kx_¢, and C,_ are required, which are the unknown parameters being estimated. Therefore,

the actual heating time can be estimated by using previous estimates of k_._ and C,_, of

other similar carbon-epoxy composite materials. The previous estimates used in this study

were obtained from Scott and Beck (1992a). Using these values, the optimal heating time

was calculated to be approximately 180 seconds. This value can be updated by

conducting the experiments, obtaining new estimates for kx.,# and C,_ recalculating the

heating time using these new estimates, and repeating the process in an iterative procedure

until the thermal properties no longer vary. However, as mentioned, a flat peak exists

between heating times of 2.0 and 2.5. Therefore, the optimal heating time does not have

to be precise to obtain the most accurate thermal property estimates.

5.1.1.3 Optimal Temperature Sensor Location

Next, the optimal temperature sensor location was determined by plotting the

determinant as a function of heating time for various sensor locations (Fig. 5.6). It was

found that the determinant is maximized when the sensor is located at the heated surface

(x ÷ = 0.0). This result is consistent with the sensitivity coefficients shown in Figs. 5.1

and 5.2, where the coefficients with the largest magnitude occurred at the heated surface.

Note that by placing additional thermocouples at other positions within the composite will

be redundant and will not supply more information for the estimation procedure.
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5.1.1.4 OptimalExperimentalTime

The last parameterthat was determinedwas the optimal experimentaltime. In

order to seethe effectof addeddatato the valueof the determinant,D ÷, the determinant

was calculated from Eqs. (3.42) and (3.43) using the optimal heating time and sensor

location previously found, but without averaging the integral contained in Eq. (3.43) over

time. The results are shown in Fig. 5.7; here, it is evident that after a dimensionless time

of approximately five, the determinant no longer changes significantly. This implies that

after this dimensionless time, the temperature is reaching its initial state and little

additional information is being provided for the estimation of the thermal properties.

Therefore, the experiments can be concluded after a dimensionless time, t_+, of

approximately five. Note that this is a conservative choice, however, and from Fig. 5.7,

a smaller value, such as four, could have also been chosen. Again, the actual

experimental time that t_ represented was found by using the definition of t_+ (Eq.

(3.44c)) and the previous estimates for kx._ and C,g (Scott and Beck, 1992a). The

experimental time calculated for this study was approximately 8 minutes. However, when

examining the measured temperatures obtained from the experiments, it is seen that its

initial state (a dimensionless value of zero) is reached after approximately five to six

minutes, indicating that no new temperature information is being supplied. This

corresponds to a dimensionless experimental time of three to four, again showing that a

tN+ of five is a conservative value.
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5.1.1.5 Sensitivity Coefficient Using the Optimal Experimental Parameters

To illustrate the optimal results, the sensitivity coefficients were re-calculated using

these optimal experimental parameters and are shown in Fig. 5.8 at an x ÷ location of zero.

As one can see from this figure, more information used to estimate the thermal properties

is supplied when the heater is applied for the determined optimal heating time rather than

over the entire experimental time. This occurs because when the heater is applied for the

entire duration, steady-state values are reached early on and information is no longer

available for the estimation of Ce¢ However, when turning the heater off during the

experiment, a new transient response is introduced which results in additional temperature

information for the estimation procedure.

5.1.2 Estimation of Thermal Properties for Isotropic Materials

The thermal properties, effective thermal conductivity perpendicular to the fiber

axis and effective volumetric heat capacity, were estimated for an IM7 graphite fiber -

Bismaleimide epoxy matrix composite both analytically, using the program MODBOX,

and numerically, utilizing the finite element software, EAL. In both cases, the modified

Box-Kanemasu method was used in the estimation procedure. The properties were

estimated using both experimental data and numerical and exact solutions so that the two

could be compared and verification of the accuracy of EAL could be made. The

estimated thermal properties obtained for the one-dimensional analysis are given in the

following two subsections. In this analysis, the optimal experimental design previously

determined was utilized to record the experimental temperatures required.
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5.1.2.1 Estimated Thermal Properties Using an Exact Temperature Solution

The thermal properties, effective thermal conductivity perpendicular to the fiber

axis and effective volumetric heat capacity, were estimated from an exact temperature

model (Eqs. (3.8) and (3.9)) using the sequential, non-linear estimation program

MODBOX. The estimates that were obtained for three repeated experiments are given in

Table 5.1, along with their 95% confidence intervals. The confidence intervals for each

estimated parameter, bi, were approximated by

b,+__[e S1112_ --" (N p) tl_at2(N p) (5.2)

where p is the number of parameters estimated, N is the number of data points measured,

P_i is the ith diagonal of the P matrix (Eq. (3.37)) which represents the variance of the

parameter, S is the sum of the squared residuals, and tl._(N-p) is the value of the t

distribution for (1-tx/2) confidence region and (N-p) degrees of freedom (Beck and

Arnold, 1977). In this study, a considerable number of temperature measurements were

taken and used in the estimation procedure; therefore, only a slight variance in the

estimates would be expected. This is in fact the case, as shown by the small confidence

intervals for each property estimate in Table 5.1. It is also seen that the confidence

intervals for kx.¢ were smaller than those for Ce¢ This implies that the estimates for kx.¢

are more accurate than for C,¢ This is consistent with the sensitivity coefficients (Figs.

5.1 and 5.2), where the magnitude of the effective volumetric heat capacity sensitivity

coefficients is less than that of the effective thermal conductivity. Therefore, the
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its 95% confidenceinterval.

from

estimationof C,z is more sensitive to experimental errors and will not be as accurate as

estimates for kx._¢

The mean value of the thermal property estimates was also calculated, along with

In this case, the 95% confidence intervals were obtained

_+ t_s (5.3)

where bi and s are the mean and standard deviation of the estimate, respectively, N is

the number of data points used, and t_ is the value of the t distribution with (N-l)

degrees of freedom and tx/2 confidence region (Walpole and Myers, 1978). As seen in

Table 5.1 for all three experiments, the property estimates fall within the 95% confidence

intervals of the mean values.

To determine how accurately the calculated temperatures matched the measured

temperatures, the Root Mean Square (RMS) error was also computed where

?lt

(E - r,)2
RMS

i,,1

_/. (5.4)

Here, T_ and Y_ are the calculated and measured temperatures, respectively, at the ith time

step, and N is the total number of temperature measurements. The RMS values were

calculated two different ways. First, the measured temperatures for each individual

experiment were compared with calculated values using the thermal properties estimated

for that experiment; these values are indicated by RMS_ in Table 5.1. The RMS values
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were then determinedusing the experimentaltemperaturesand calculatedtemperatures

determinedusing the mean thermal property values (also shown in Table 5.1); these

valuesare indicatedby RMSM.

To demonstrate the validity of the estimated properties, the calculated temperatures

obtained using the estimated effective thermal conductivity and effective volumetric heat

capacity values were compared with the measured temperatures for Experiment 3 in Fig.

5.9. As one can see, there was very good agreement between the calculated and

measured temperatures which indicates that the estimated values are reliable.

The significance of the RMSM values, or the errors resulting from using the mean

Table 5.1 Estimated effective thermal conductivity, kx_¢, and volumetric heat capacity,

Ce_, from Experiments 1, 2, and 3, using exact temperature solutions along

with the Root Mean Square error calculated from individual and mean thermal

property estimates (RMS1 and RMSM).

kx-ez (W/m°C)

Celt (MJ/m3°C)

RMSI (°C)

% Maximum

Temperature Rise

RMSM (°C)
% Maximum

Temperature Rise

Exp. 1 Exp. 2 Exp. 3 Mean

0.519 0.506 0.529 0.518 ± 0.028

+ 0.002 _+0.002 _+ 0.003

1.423 1.505 1.495 1.474 ± 0.111

+_0.013 _+0.012 ± 0.008

0.0526

0.24%

0.0548

0.34%

0.0815

0.36%

0.0908

0.40%

0.0652

0.26%

0.0827

0.34%
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thermal property estimates, was demonstrated by plotting the temperatures calculated

using the mean thermal property estimates against each set of experimental data in Fig.

5.10. From this figure, it is evident that in each case, the calculated temperatures closely

match the measured temperatures. Furthermore, in comparing Table 5.1 with Fig. 5.10,

the slight under prediction of temperature in Experiment 2 and the slight over prediction

of temperature in Experiment 3 can be attributed to the small differences between the

individual estimated effective thermal conductivity and the mean value, with the thermal

conductivity estimate for Experiment 2 being slightly under the mean and the value for

Experiment 3 being slightly over the mean value. However, even with these slight

variations, the RMSu as a percentage of the maximum temperature rise for each run was

less than 0.5%, as shown in Table 5.1. This indicated that for all three cases, the mean

values provided reasonable estimates of the true thermal property values. It also indicates

that the model used to describe this heat conduction process, as well as the experimental

design used to obtain the temperature data, are satisfactory.

The estimate obtained for the effective thermal conductivity was compared with

results obtained at NASA-LaRC using a cut-bar comparative apparatus (Dynatech, model

number TCFCM-N4). This device operates by supplying a steady state heat flow in one

dimension across the composite sample and the same heat flow through a known standard

material. The temperature difference across the standard material allows for the

determination of the heat flux, while the temperature difference across the sample gives

the value of the effective thermal conductivity. Using this apparatus, experiments were

conducted on three composite samples that were the same type studied in this analysis.
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The average result obtained for these three composite samples for the thermal

conductivity was 0.473 _+0.038 W/m°C. This is approximately a 9% difference from the

average kx.,g estimated in this study. However, these experiments were conducted at

40°C, whereas in this investigation, the experiments were performed at room temperature;

therefore, an exact comparison cannot be made.

5.1.2.2 Estimated Thermal Properties Using a Numerical Temperature Solution

The thermal properties were also estimated using EAL, where the temperatures

were calculated numerically. Again, the modified Box-Kanemasu estimation technique

was employed. The results obtained for the estimated effective thermal conductivity

perpendicular to the fibers and effective volumetric heat capacity for the three

experiments are shown in Table 5.2, along with the % difference from the estimates

obtained using the exact temperature solutions. This % difference is defined as

_-_ x 100% (5.5)

where 13is the parameter being estimated. As one can see from Table 5.2, the estimates

found using EAL closely match those obtained using exact temperature models with a

percent difference of less than 1% occurring. The effective volumetric heat capacity

estimates had the largest percent differences and resulted because this property is more

difficult to estimate than the thermal conductivity. As mentioned, this occurs because the

magnitude of the sensitivity coefficients for C,g are less than those for k,,.¢, causing the

estimation of Ce_ to be more sensitive to experimental errors and to not be as accurately
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Table 5.2 Estimatedeffectivethermalconductivity,kx.,_ and volumetric heat capacity,

C,_ from Experiments 1, 2, and 3, using numerical temperature solutions

(from EAL) along with the % difference from estimates calculated using exact

temperature models.

kx__ (W/m°C)

% Difference

Ce_(MJ/m3°C)

% Difference

Exp. 1 Exp. 2 Exp. 3 Mean

0.518 0.503 0.527 0.516

0.19% 0.59% 0.38% 0.39%

1.420 1.495 1.486 1.467

0.21% 0.66% 0.60% 0.49%

estimated as kx.,t

From Table 5.2, it can be concluded that the estimated parameters found using the

finite element software, EAL, are quite accurate and provide reasonable estimates of the

true thermal property values.

To verify the accuracy of the temperature solution found using EAL, based on the

estimated parameters, the temperature profile was plotted along with the temperature

distribution calculated using an exact analytical solution, as shown in Fig. 11. Here, it

is seen that the two curves are essentially equal, and therefore, using EAL provides

reliable temperatures. This is also shown by calculating the RMS value, as given in Eq.

(5.4), where Y_ is the temperature calculated from an exact solution and T_ is the

temperature calculated from EAL. For the experiment shown in Fig. 5.11, the RMS value

was only 0.27%, again indicating the accuracy of EAL.
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5.1.2.3 Sequential Parameter Estimates

Viewing the sequential parameter estimates can give insight on the validity of the

mathematical model used to represent the heat conduction process and the resulting

experimental design. The sequential estimates for the converged values of the thermal

conductivity and volumetric heat capacity for Experiment 3 are plotted in Fig. 5.12; these

estimates were obtained using exact mathematical models. From this figure, it is evident

that each estimate fluctuated greatly towards the beginning of the experiment. This

occurred because the heat flux had just been activated and not enough temperature

information was available for the estimation procedure. However, after approximately

400 seconds which corresponds to a dimensionless experimental time of approximately

three, the estimates for both the thermal conductivity and volumetric heat capacity are

constant, indicating that additional data would have provided little additional information

for the estimation of these parameters. This also indicates that the heat conduction model

is satisfactory and the optimal experimental time of five is indeed a conservative value,

as discussed previously.

5.2 Results Obtained for the Two-Dimensional Analysis (Anisotropie Composite

Material)

For the two-dimensional analysis, three properties can be estimated simultaneously:

effective thermal conductivity perpendicular to the fiber axis (kx.e_,), effective thermal

conductivity parallel to the fiber axis (ky.,_g), and effective volumetric heat capacity (C,#).
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In this investigation,thesethermalpropertiesarenotestimated;however,theexperimental

designsusedto obtain the temperaturedata requiredfor the estimationprocedureare

optimized,asin theone-dimensionalanalysis.Discussednextaretheresultsobtainedfor

theseoptimal experiments.

5.2.1 Two-Dimensional Optimal Experimental Designs

Two different two-dimensional experimental configurations were analyzed in this

study, each containing different boundary conditions. The experimental parameters for

both configurations were optimized by maximizing the determinant of the product of the

sensitivity coefficients and their transpose. The maximum determinant values for both

configurations were then compared to determine which design would be the best choice;

the configuration with the largest determinant value would give the most accurate

property estimates. Recall that both configurations had a uniform heat flux imposed over

a portion of one boundary with the remainder of the boundary insulated. In addition,

Configuration 1 had known, constant temperatures at the remaining three boundaries,

while the second configuration had a constant temperature at the boundary opposite to the

flux boundary and insulated conditions at the remaining two boundaries. (For clarity,

these configurations are again shown in Figs. 5.13 and 5.14). Therefore, in addition to

the optimal parameters determined for the one-dimensional case, the optimal position of

the heat flux was also determined for both configurations. Because of the different

boundary conditions used, the optimal experimental parameters for each design will not

be identical. For example, the portion of the boundary that the heat flux should cover
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will vary between the two configurations, and therefore, must be determined for each

individual design. The optimal parameter results for both configurations are discussed

in the following two subsections. These include the optimal heating time, optimal

temperature sensor location, optimal heat flux position, and optimal experimental time.

In addition, the sensitivity coefficients for both configurations are analyzed for insight into

the experimental design and to determine if possible correlation exists between the

thermal properties. The two configurations are then compared to determine which will

provide more accurate property estimates, and fmally, the last subsection discusses the

optimal values for various composite dimension (L_y) and thermal conductivity (,:,,y) ratios.

5.2.1.1 Optimal Experimental Parameters Determined for Configuration 1

Using Configuration 1, it was desired to select the experimental parameters which

maximize the sensitivity of the temperature with respect to all of the unknown thermal

properties. The same technique was used as in the one-dimensional optimization

procedure, only now, the required maximum temperature value (T,_ ÷) was redefined as

the temperature attained at steady state. This T,,_ ÷ was used because it represents the

actual maximum temperature that could be reached for this particular design.

To perform the optimization procedure, the temperature solutions and sensitivity

coefficients require predetermined values for L_y (LiLy) and _ (ky_c/kx.eff). The value

chosen for L_ in this analysis corresponds to the size (0.49 cm x 10.16 cm) of an existing

composite sample that can be used in the experiments to determine the temperatures

needed in the estimation procedure, while the value for K,y was taken from previously
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measuredeffective thermalconductivitiesparallelandperpendicularto the fiber axis of

similar carbon-epoxycompositesamples(Loh andBeck, 1991). The specificvaluesused

were L_y = 0.048 and r_y = 7. However, to allow the optimization procedure to be

applicable to other composite dimensions or effective thermal conductivity ratios, optimal

experimental parameters were also calculated for all possible combinations of L_y'S equal

to 0.5 and 1.0, and r_y's equal to 1 and 1/7. This results in a total of nine combinations.

The results for the combination discussed above (L_y = 0.048 and r_ = 7) will be

examined the most thoroughly, however, since these are the actual conditions of an

existing composite sample that can later be utilized in the experimental designs to

estimate the thermal properties.

In performing the optimization procedure for L_ = 0.048 and r_ = 7, five

parameters were optimized: the dimensionless portion of the boundary that the heat flux

is applied, _,1 ÷, the dimensionless location (xs÷,ys÷) of the temperature sensor, the

dimensionless heating time, th÷, and the dimensionless experimental time, t_. Note that

the optimal experimental time is not as important as the other four parameters. Therefore,

the optimal procedure used to determine xs÷, y,÷, Lpj, and th÷ did not take into account

the optimization of t_+ (this value was determined last).

The most accurate way to determine the optimal value for each parameter is to

differentiate the determinant given in Eq. (3.45) with respect to each of the experimental

parameters and set it equal to zero, resulting in four equations and four unknowns. These

equations can then be solved simultaneously, allowing for the desired optimal parameters

to be determined. However, this method is not practical due to the complexity of the
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equationsinvolved. Therefore,an iterativeschemewasdevelopedwherea programwas

used to vary each of the four parametersindividually (excluding t_). This iterative

procedure consists of two phases; the first phase includes determining the general range

of the optimal values, while the second phase narrows this range to determine the optimal

experimental parameters more precisely. In phase one, the following procedure was used:

1) Fix xs ÷, ys+, and Lp, l÷ to their starting values (0.0, 0.0, and 0.1, respectively).

2) Vary th÷ from 0.05 to 5.0 by 0.05. For each th÷, calculate the determinant, D ÷, as

a function of time, t+.

3) Determine the maximum determinant value, D,_ ÷, for each of the determinant

curves generated in step 2 for each th÷.

4) Compare the maximum determinant values found for each th÷ and record the one

with the largest magnitude, along with its corresponding heating time, th÷.

5) Holding y,+ and Le, l ÷ constant at their original values, vary xs ÷ and repeat steps 2

through 4. Note, xs÷ was varied from 0.0 to 1.0 by 0.1 increments.

6) After the x, ÷ loop is completed, change ys+ to its new value (increment the previous

value by 0.1) holding Le,_+ fixed and again repeat steps 2 through 5. Note, ys+ was

varied from 0.0 to 1.0 by 0.1 increments.

7) Finally, change Lj,,_÷ to its new value (increment the previous value by 0.1) and

repeat steps 2 through 6 in the designated order.

This procedure then provides a maximum determinant value for all combinations of x, ÷,

y_+ and Le,1+, with the corresponding th +. From this data, the general region of the actual
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maximumdeterminant can be determined. Phase two then involves refining the grid sizes

for the parameters in this region to determine the D,_ ÷ location more precisely. Since

there is more than one parameter that can vary, the procedure is more complex than the

one-dimensional analysis, and must be iteratively updated.

5.2.1.1.1 Optimal Temperature Sensor Location on the x ÷ Axis

The first optimal parameter determined was the temperature sensor location along

the x ÷ direction. Recall from the experimental configuration (Fig. 5.13) that this is the

direction parallel to the heat flow. From the one-dimensional analysis, it was determined

that the optimal location to place the sensor was at the heated surface. Therefore, the

same result would be expected for the two-dimensional analysis. This was in fact the

case, with the maximum determinant always occurring at a xs ÷ location equal to zero (or

at the heat flux boundary) for all combinations of Le,_÷ and ys ÷. This result is reasonable

because the maximum determinant occurs when the sensitivity coefficients are the largest,

or when the greatest temperature variation occurs. Since the temperature of the composite

is initially at a dimensionless value of zero, then at the boundary where the uniform heat

flux is applied would be the location where the largest temperature gradient in the x ÷

direction would occur.

5.2.1.1.2 Optimal Temperature Sensor Location on the y÷ Axis

The next parameter chosen to optimize was the sensor location along the y+ axis.

After calculating the maximum determinant value for each xs÷, ys ÷, and _,_+ combination
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and determiningthat the optimal sensorlocation along the x + axis was at the heated

surface, it was found that the true maximum determinant (the largest value of all of the

maximum determinants for each combination) was in the general region of ys÷--0.1,

Lp.l÷=l.0, and th÷=l.35. However, it should be noted that for all Lp.1+ locations, the

maximum determinant always occurred at ys÷ equal to 0.1 with a th÷ of approximately

1.35. Using the optimal values of Lpj=l.0 and th+=l.35, the grid size for y,+ was refined

around 0.13, using a range from 0.05 to 2.0, to determine the optimal y,+ location more

precisely. Using this refined range, the maximum determinant occurred at a new y,÷

location of 0.13, as shown in Fig. 5.15, where the maximum determinant values for

various y,+ locations are plotted (again, using _,_÷=1.0 and th+=l.35). It should be noted

that when the heat flux is applied across the entire boundary (Lpj=I.0), the problem

becomes symmetric. Therefore, a y,* of 0.87 would also be an optimal location, resulting

in the same maximum determinant value as for y,* equal to 0.13.

5.2.1.1.3 Optimal Heating Time

The next parameter determined was the optimal heating time. Using the optimal

location for y,+ found above of 0.13 and the corresponding Lj,,_÷ of 1.0, the dimensionless

heating times were varied around the previously determined optimal value of th÷=l.35

(ranging from 0.05 to 2.0). The maximum determinant then occurred at a new th÷ of 1.4,

as seen in Fig. 5.16, where the maximum determinants are plotted for various th÷ values.

As mentioned, since more than one parameter can vary, determining the optimal
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parameters for the actual maximum determinant becomes an iterative process. Therefore,

since a new th+ was determined, the y,+ values were again varied over the same range

(0.05 to 2.0) using the new heating time of 1.4 (and the previously calculated optimal

value for Le,[ of 1.0) to see if its optimal value changed. However, as seen in Fig. 5.17,

changing the heating time from 1.35 to 1.4 did not alter the optimal ys ÷ value of 0.13.

5.2.1.1.4 Optimal Heat Flux Location, Le,1÷

Using the optimal parameters determined of xs÷--0.0, ys÷--0.13, and th+=l.4, the

position of the heat flux, Le,[, was then varied from 0.6 to 1.0 to see if the previous

optimal location of _j=l.0 changed when using these new y,+ and th÷ values. This

result is shown in Fig. 5.18. As seen in this figure, the maximum determinant occurred

at a _,_÷ location of 1.0, as obtained previously. This indicates that the optimal design

for Configuration 1 consists of having the heat flux applied over the entire boundary.

However, it is evident that the curve in Fig. 5.18 is rather flat when the heater is applied

over 70 to 100% (0.70 to 1.0) of the boundary, and therefore, any value in this range

could be used to obtain the same accuracy in the property estimates.

5.2.1.1.5 Optimal Experimental Time

Finally, the last parameter determined was the optimal dimensionless experimental

time, t_. This was calculated using the same procedure as for the one-dimensional

analysis, where the dimensionless determinant, D ÷, was calculated from Eqs. (3.42) and

(3.43) using the optimal parameters determined for xs +, y,+, Lp,[, and th+, but without
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averaging the integral contained in Eq. (3.43) over time. The results are shown in Fig.

5.19; here, it is evident that after a dimensionless time of approximately 4.0, the

determinant no longer changes significantly. This implies that after this dimensionless

time, the temperature is returning to its initial state (a dimensionless value of zero) and

little additional or no information is being provided for the estimation of the thermal

properties. Therefore, the experiments can be concluded after a dimensionless time, tN+,

of approximately 4.0. Again, however, as in the one-dimensional case, this is a

conservative choice, and a smaller value, such as 3.5, could have also been chosen.

5.2.1.1.6 Verification of the Optimal Temperature Sensor Location of the x ÷ Axis

To verify the optimal location of the temperature sensor along the x ÷ direction, for

which a value of zero was determined, the dimensionless determinant was calculated

using the optimal values for ys ÷, Lp,1÷, and th÷ for various xs ÷ locations. The results are

plotted in Fig. 5.20 against dimensionless time. As seen from this figure, the maximum

determinant occurred when the sensor was at the heated surface (xs÷ = 0.0), confh-ming

the optimal result obtained for the xs ÷ location.

5.2.1.1.7 Maximum Determinant Using the Optimal Experimental Parameters

In summary, the above optimization procedure resulted in the following optimal

experimental parameters for Configuration 1: x,÷--0.0, y,÷=0.13, Le,l÷=l.0, and th÷=l.4.

Using these optimal experimental parameters, the dimensionless determinant, D ÷, was

plotted versus dimensionless time, where a maximum of 5.36 x 10 -7 occurred, as shown
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in Fig. 5.21. The reason why these determinant values are less than those obtained for

the one-dimensional case is because D ÷ is now a 3 x 3 determinant, as given in Eq.

(3.45). Since the sensitivity coefficients are of the same order of magnitude for both the

one-dimensional and two-dimensional cases, then multiplying three coefficients together,

as required in the 2-D determinant, will result in smaller maximum determinant values

than multiplying only two coefficient values, as in the 1-D determinant.

5.2.1.1.8 Temperature Distributions for Configuration 1

Using the optimal values for xs ÷ and Lp._÷, temperature was plotted for various y,÷

locations for four different dimensionless times: early (0.1), intermediate (two at 0.5 and

1.4), and steady state (4.0) (Fig. 5.22). Note that these temperature distributions were

calculated with the heat flux applied for the entire experimental time, tN+. The desired

optimal values occur when the determinant is a maximum, or when the sensitivity

coefficients are the most sensitive to temperature changes. This typically occurs when

the temperature gradient is large. As seen from this figure, at and near the optimal ys÷

location of 0.13, the temperature gradient is steep with respect to ys+, and therefore, the

sensitivity coefficients for ky.eg are expected to be large in magnitude. This steep gradient

occurs because the composite sample is heated, however, the temperatures at the

boundaries are held constant, resulting in a large temperature variation. However, it is

also seen that the optimal y,÷ location is not at the steepest temperature gradient. This

results because the maximum determinant occurs when the product of the sensitivity

coefficients for all three parameters is the largest in magnitude, which is not necessarily
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at the largest temperature gradient in the y+ direction.

The temperature distribution was also calculated as a function of time using the

optimal experimental parameters determined above (see Fig. 5.23). As shown in Fig.

5.23, the heat flux is terminated as the temperature approaches steady state (th+=l.4).

This is consistent with Fig. 5.22, where applying the heat flux for the dimensionless time

of 1.4 results in temperatures close to the steady state temperatures attained at t÷=4.0.

5.2.1.1.9 Sensitivity Coefficients Calculated Using the Optimal Experimental Parameters

Using the optimal experimental parameters determined, the dimensionless

sensitivity coefficients for the three effective thermal properties, kx.¢_ ky._ and C,a, were

calculated and plotted as a function of dimensionless time, as shown in Fig. 5.24. Here,

it is seen that the sensitivity coefficients for kx.w and C,_, are relatively large in magnitude,

being on the same order as the temperature rise, with the kx.w coefficients being the

largest. The sensitivity coefficients for kra have the smallest magnitude of all three. It

is also seen that after a dimensionless time of approximately four, all of the coefficients

converge to zero, indicating that temperature measurements taken beyond this time supply

little additional information for the estimation procedure. This result is consistent with

the temperature distribution (Fig. 5.23), where its initial state was attained after this

dimensionless time. Therefore, no new temperature information is being provided and

the estimation procedure is complete. This result is also consistent with the determined

optimal experimental time, where after a t_÷ of 4.0, the determinant no longer varied.

Since the sensitivity coefficients for kx.,_, have a larger magnitude than the
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coefficients for ky.,_ and Ce_ it implies that the temperature data are supplying more

information for the estimation of kx.e_,than ky.e_ and Ce_, As a result, the estimated values

obtained for kx_,jr can be regarded as the most accurate of the three parameters, resulting

in the smallest confidence intervals.

As mentioned in the one-dimensional case, it is important to plot the sensitivity

coefficients to see if they are correlated. If correlation occurs, the thermal properties

cannot be estimated independently. From Fig. 5.24, it is evident that the Ce_, sensitivity

coefficient, which changes from negative to positive values, is not correlated with either

the k_._lr or ky.,f r coefficients, which are always negative. However, this observation is not

as apparent between the k_._¢ and kre _ sensitivity coefficients. If they are correlated, then

only the ratio, r_y, can be estimated. Therefore, to test for possible correlation, the ratio

of X_IXk[_._ was calculated and plotted as a function of dimensionless time (Fig. 5.25).

If a straight line occurs, the two parameters are correlated. However, as evident from Fig.

5.25, the line is far from linear, and therefore, k_.¢, and kr_ can be estimated

simultaneously.

5.2.1.2 Optimal Experimental Parameters Determined for Configuration 2

Recall that Configuration 2 consisted of a uniform heat flux imposed over a

portion of one boundary, with the remainder of the boundary insulated. The boundary

opposite to the flux boundary was maintained at a known constant temperature, and the

remaining two boundaries were insulated (Fig. 5.14). Again, for this configuration, it was
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desired to select the experimental parameters which maximize the sensitivity of the

temperature with respect to all of the unknown thermal properties. Since the same

composite samples will be used in the experiments for both Configurations 1 and 2, the

result for a L,,y of 0.048 and a _y of 7 (Loh and Beck, 1991) will again be the most

thoroughly analyzed. However, as in the Configuration 1 case, all possible combinations

of r_y equal to 1 and 1/7, and L_y equal to 0.048, 0.5, and 1.0 will also be performed. The

same optimization procedure, as discussed in Section 5.2.1.1 for Configuration 1, was

used and similar experimental parameters were optimized (xs+, ys +, LvJ, th+, and t_+).

These experimental parameter results are discussed next.

5.2.1.2.1 Optimal Temperature Sensor Location on the x ÷ Axis

The first optimal experimental parameter determined was the temperature sensor

location along the x÷ axis. Again, as in Configuration 1, the maximum determinant

always occurred at a xs + location equal to zero (or at the heated surface) for all

combinations of y,+ and Lp.2+. This occurs for the same reason as discussed in Section

5.2.1.1.1, where the largest temperature gradient in the x ÷ direction occurs at the heated

surface.

5.2.1.2.2 Optimal Temperature Sensor Location on the y÷ Axis and Heat Flux Position

The next parameters that were optimized were the sensor location along the y÷ axis

and the position of the applied heat flux, Lv,2+. After calculating the maximum

determinant for each x, +, y,+, and Lp,2+ combinations, the true maximum determinant (the
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largest value of all of the maximum determinantsfor each combination) was in the

generalregion of L_,2÷--0.9, ys+---0.8, and th÷=l.55. To determine the precise location of

the actual maximum determinant, both the Le,2÷ and ys÷ grid sizes were refined around the

previously obtained values of 0.9 and 0.8 respectively, (Lt,,2÷ was varied from 0.84 to 0.92

and ys ÷ was varied from 0.6 to 0.9) while holding th÷ constant at 1.55. For each Le,2 ÷

value, the maximum determinant was plotted as a function of the ys ÷ location in Fig. 5.26.

As seen in this figure, the actual maximum determinant occurs at a Le,2÷ of 0.89 and a

corresponding y,÷ location of 0.77. However, it is seen that the curve is fairly flat when

Le, 2 is located between 0.88 to 0.9; therefore, any value within this range could be used

for/-_,2 to improve the accuracy of the property estimates. Note that Lv,2 ÷ is different than

/_,_,1÷, as expected. If Lv,2 ÷ had equalled Le,1÷ the heat flux would be applied over the

entire boundary. Due to the insulated boundary conditions on the sides used in this

configuration, the problem would reduce to one-dimensional heat conduction and ky.¢,

could no longer be estimated.

5.2.1.2.3 Optimal Heating Time

The next parameter optimized was the heating time. Setting Lv,2 ÷ and ys÷ equal to

their optimal values calculated in the above section, (0.89 and 0.77, respectively) the

heating time was varied around its previously determined value of th+=l.55 (from 1.45 to

1.65). At each heating time, the dimensionless determinant was calculated as a function

of dimensionless time. A few of these determinant curves are shown in Fig. 5.27 for
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various heating times. The maximum determinant value of all of these curves occurred

when the heating time was equal to 1.55. This is the same result obtained previously, and

therefore, the optimal values calculated for Lp.2÷ and ys ÷, which were found using a th÷ of

1.55, do not have to be iteratively updated. Note, however, that the maximum

determinants are practically equal for all heating times between 1.45 and 1.65. Therefore,

using a th÷ of 1.55 does not have to be precise to provide the most accurate property

estimates.

5.2.1.2.4 Optimal Experimental Time

Finally, the last parameter determined was the optimal dimensionless experimental

time, tN+. This was calculated using the same procedure as in Configuration 1 (Section

5.2.1.1.5) with the modified dimensionless determinant results shown in Fig. 5.28. Here,

it is evident that again, as in Configuration 1, after a dimensionless time of approximately

4.0, the determinant no longer changes. This implies that after this dimensionless time,

the temperature is returning to its initial state (a dimensionless value of zero) and little

additional information is being provided for the estimation of the thermal properties.

Therefore, the experiments can be concluded after a t_ of 4.0. Again, however, as was

the case for Configuration 1, this is a conservative choice and a smaller value, such as

3.5, could have also been chosen.

5.2.1.2.5 Verification of the Optimal Temperature Sensor Location on the x ÷ Axis

To verify the optimal location of the temperature sensor along the x ÷ direction, for
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which a value of zero was determined, the dimensionless determinant was calculated

using the optimal values for ys ÷, Lp,2÷, and th÷ for various xs ÷ locations. The results are

shown in Fig. 5.29 against dimensionless time. As seen from this figure, the maximum

determinant occurred when the sensor was at the heated surface (xs÷---0.0), confirming the

optimal result obtained for the xs ÷ location.

5.2.1.2.6 Maximum Determinant Using the Optimal Experimental Parameters

In summary, the above optimization procedure resulted in the following optimal

experimental parameters for Configuration 2: x,+--O.O, y_+---0.77, Lv,2+---0.89 and th+=l.55.

Using these optimal parameters, the dimensionless determinant, D ÷, was plotted as a

function of dimensionless time, where a maximum of 4.29 x 10 -7 occulted, as shown in

Fig. 5.30. Again, the mason why these determinant values are less than those obtained

for the one-dimensional case is the same as discussed in Section 5.2.1.1.7.

5.2.1.2.7 Temperature Distributions for Configuration 2

Using the optimal values for x, ÷ and Lv,2÷, the temperature was plotted for various

y,÷ locations for four different dimensionless times; initial (0.1), two intermediate (0.5 and

1.55), and steady state (4.0) (Fig. 5.31). Note that these temperature distributions were

calculated with the heat flux applied for the entire experimental time, tN*. The desired

optimal values occur when the determinant is a maximum, or when the sensitivity

coefficients are the most sensitive to temperature changes. As mentioned previously, in

the case of thermal conductivity, this can occur when the temperature gradient is large.
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As seen from this figure, at an optimal ys + location of 0.77, the temperature gradient is

steep, and therefore, it is expected that the sensitivity coefficients for kr¢, are large in

magnitude. However, the optimal ys + location for this design again does not occur at the

steepest temperature gradient and results for the same reasons given in the Configuration

1 analysis.

The temperature was also calculated as a function of dimensionless time using the

optimal experimental parameters determined previously (Fig. 5.32). As seen in Fig. 5.32,

the temperature distribution behaves the same way as for Configuration 1, where the heat

flux is terminated as the temperature approaches steady state (th+=l.55). This is again

consistent with Fig. 5.31, where applying the heat flux for the dimensionless time of 1.55

results in temperatures close to the steady state temperatures attained at t+--4.0.

5.2.1.2.8 Sensitivity Coefficients Using the Optimal Experimental Parameters

Using the optimal experimental parameters determined, the dimensionless

sensitivity coefficients for the three effective thermal properties, kx.¢_ ky.e_, and Ce_ were

calculated and plotted as a function of dimensionless time in Fig. 5.33. Here, it is seen

that the sensitivity coefficients for kx.,_ and C,_, are relatively large in magnitude, while

for ky.,_ the coefficients are much smaller (of the order 0.1). It is also seen that after a

dimensionless time of approximately four, all of the coefficients converge to zero,

indicating that temperature measurements taken beyond this time supply little additional

information for the estimation procedure. This result is consistent with both the

temperature distribution in Fig. 5.32, where its initial state was attained after this
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dimensionless time, and with the determined optimal experimental time, where after a t_

of 4.0, the determinant no longer varied (Fig. 5.28).

Again, the sensitivity coefficients should be analyzed to see if they are correlated.

If correlation occurs, the thermal properties cannot be estimated independently. From Fig.

3.33, linear independence is again evident between Ce_ whose coefficient changes from

negative to positive values, and both kx._¢ and ky.e_ where the coefficients are always

negative. However, as with Configuration 1, it was desired to determine if the sensitivity

coefficients for kx.,_ and ky.e_ are correlated. If correlation occurs, then only the ratio, r_,

can be estimated. To test for possible correlation, the ratio of X_,.IXk_ _ was again

calculated, with the results shown in Fig. 5.34. If a straight line occurs, correlation exists.

From this figure, however, it is evident that a linear line does not occur, and therefore,

the coefficients are linearly independent and kx.e_, and ky.eff can be estimated

simultaneously.

5.2.1.3 Comparison of Configurations 1 and 2

After calculating the optimal experimental parameters for both Configurations 1

and 2, the configurations were compared to determine which one would provide the most

accurate thermal property estimates. This comparison can be made by determining which

configuration has the largest maximum determinant. Figure 5.35 shows the dimensionless

determinants as a function of dimensionless experimental time calculated using the

optimal experimental parameters found for each configuration. From this figure, it is
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evident that the design with constant temperatures on the two sides (Configuration 1) will

provide more accurate estimates than the design with insulated sides (Configuration 2).

However, this conclusion requires further analysis by viewing the sensitivity coefficients

for each configuration, as shown in Fig. 5.36. Here, it is seen that the sensitivity

coefficients for kx.e_, and Ce_, are 20% and 9% larger in magnitude, respectively, for

Configuration 2 than Configuration 1. However, the sensitivity coefficient for kr¢, is

136% larger in magnitude for Configuration 1 than Configuration 2. (Note, these percents

were calculated using the largest point on each of the curves). This difference in ky._¢ is

much more substantial than that for kx.¢, and Ce¢ From viewing these sensitivity

coefficients, it can be concluded that when estimating all three thermal properties

simultaneously, Configuration 1 should be utilized, since it will provide approximately

the same amount of information for kx.,g and C,_ that Configuration 2 would provide, but

considerably more information for the estimation of ky.q. This result seems reasonable

since a greater temperature variation would occur in the y÷ direction (the same direction

as ky.,#) when the walls are maintained at a constant temperature of zero rather than

insulated, where the wall temperatures are allowed to rise (only the gradient at the wall

is required to remain equal to zero). This result in consistent with comparing the

maximum determinant values between the two configurations, as discussed previously.

5.2.1.4 Other Optimized Parameters

For both configurations used in the two-dimensional analysis, the optimal

parameters were determined using a L_y of 0.048 and a _ of 7. A L,,y ratio of this
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magnitude is typical of the sizes of composite samples used in experimental designs. The

samples used by Loh and Beck (1991) to determine the effective thermal conductivities

parallel (ky.e_g)and perpendicular (kx.e#) to the fibers, from which they determined a thermal

conductivity ratio of 7, were also of this magnitude. Since this study uses similar carbon-

epoxy composite materials, a ruy of 7 was also used in this investigation. However, to

demonstrate how this optimization analysis could be extended to other composite

dimensions or effective thermal conductivity ratios, different values for _ and L_ were

also used in the optimization procedure. These combinations include L_y equal to 0.048,

0.5, and 1.0, and _ equal to 7, 1, and 1/7. The results for all combinations are discussed

in the following subsections.

5.2.1.4.1 Various L_ and r_y Combinations Used for Configuration 1

The first combination investigated was L_y = 0.5, and _ = 7. This L_ results in

the composite thickness in the direction of heat transfer (the x ÷ direction in this analysis)

being ten

discussed in

calculated.

times greater than

Section 5.2.1.1,

when L_y equalled 0.048. Using the same procedure

the general region of the maximum determinant was

Using the optimal experimental parameters found for this region, the

sensitivity coefficients were calculated and plotted, as shown in Fig. 5.37. From this

figure, it is seen that the coefficients reach steady state very quickly. This occurs because

of the significant increase in the thickness in the x ÷ direction, creating more material to

absorb the heat produced from the applied heat flux. Therefore, it can be concluded that

using this L,,y and _ combination provides inadequate information for the estimation
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procedureand is not recommendedasanexperimentaldesign. Basedon this result, it is

evident that raising Lxy to 1.0, where the thickness in the x ÷ direction is additionally

increased, will provide similar results, and therefore, should also not be used as an

experimental design. When comparing these two results to the case previously analyzed

in Section 5.2.1.1.9 (L_y = 0.048, _ = 7), it is seen that when using a thin sample for this

thermal conductivity ratio, more information is available for the estimation of the thermal

properties. This is shown by the larger sensitivity coefficients that result for all three

parameters (Fig. 5.24).

Next, to determine the effects of different effective thermal conductivity ratios,

was decreased to 1, and again, combinations for L_y equal to 0.048, 0.5, and 1.0 were

analyzed. Note that a r_ of 1 implies that the resistance to heat flow is equal in both the

x ÷ and y÷ directions (due to equal effective thermal conductivities).

For all three L_y-r_ combinations, the sensitivity coefficients were plotted using

experimental parameters around the maximum determinant region. These results are

shown in Figs. 5.38, 5.39, and 5.40 for L_y values of 0.048, 0.5, and 1.0, respectively.

From Fig. 5.38, it is seen that when L_ equals 0.048, sufficient information is provided

for the estimation of kx.e_ and Ce_ where the sensitivity coefficients are large in

magnitude. However, the coefficients for ky.,_, are quite small, remaining practically zero

for the entire experimental time. This implies that the estimation of ky._ will be difficult,

and most likely, inaccurate.

For L_y equal to 1.0 (Fig. 5.40), it is again seen that the sensitivity coefficients
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reach steady state fairly rapidly, and therefore, little information is being supplied for the

estimation of the thermal properties.

The sensitivity coefficients calculated using a L_y of 0.5 (Fig. 5.39), however, are

all relatively large in magnitude. This implies that when using this L_ ratio, difficulty

in the estimation of the thermal parameters will not be encountered.

In conclusion, when a composite has equal effective thermal conductivities parallel

and perpendicular to the fibers, the optimal L_y ratio is not for either a real small or real

large thickness in the direction of heat flow, but instead, falls somewhere in between. An

L_y of 0.5 may perhaps be the optimal ratio; however, this conclusion would require

further analysis.

The last combination of L_y's and _y for Configuration 1 were again, L_ equal to

0.048, 0.5, and 1.0, with _ equal to 1/7. Now, the effective thermal conductivity

perpendicular to the fibers (in the direction of the heat flow) is 7 times larger than the

thermal conductivity parallel to the fibers. The sensitivity coefficients for all three

combinations, L_ equal to 0.048, 0.5, and 1.0, were calculated using the optimal

experimental parameters determined around the maximum determinant region. These are

shown in Figs. 5.41, 5.42, and 5.43, respectively. From Fig. 5.41, where L_ = 0.048, it

is seen that ky.eS cannot be estimated since the sensitivity coefficient is zero. This occurs

because the larger thermal conductivity (kx._) is parallel to the heat flow (in the x ÷

direction). Since the sample is so thin in this direction, the majority of heat is conducted

along this path, causing very small temperature variations to occur perpendicular to the

heat flow, along the y+ axis.
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From Fig. 5.42, is seen that increasing L_ to 0.5 provides better results for the

estimation of ky.,¢, where the sensitivity coefficient is larger in magnitude. This occurs

because the thickness in the direction of heat flow, x +, increases. Therefore, the

conduction process is slowed, allowing more heat to be dissipated in the y* direction.

This result is even more significant when increasing L_y to 1.0 (Fig. 5.43), where

the largest magnitude for the ky.¢, sensitivity coefficient out of all three combinations

OCCURS.

It can be concluded from these results that when the effective thermal conductivity

in the direction of heat flow is much larger than the thermal conductivity in the direction

perpendicular, a better experimental design would consist of a larger thickness in the x +

direction, allowing more heat to be dissipated in the direction perpendicular to the heat

flow.

5.2.1.4.2 Various Lxy and rw Combinations Used for Configuration 2

Again, the first combination investigated was L_y = 0.5 and _ = 7. The sensitivity

coefficients calculated using the optimal experimental parameters in the region of the

maximum determinant are shown in Fig. 5.44. Here, it is seen that not much information

is being supplied for the estimation of ky.e_ where the sensitivity coefficient is small.

This occurs because of the increased thickness in the x+ direction. Raising L_y to 1.0 will

further increase this thickness, and therefore, similar results are expected. Therefore, it

can be concluded that when the thermal conductivity in the direction of heat flow is much

smaller than the thermal conductivity perpendicular to the direction of heat flow, a
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composite sample with a small thickness should be used for the best results. This result

is consistent with the case previously analyzed (L_y = 0.048, r_y = 7), where the sensitivity

coefficients for all three parameters are slightly larger than when L_y = 0.5.

Next, r_y was decreased to 1 and similar combinations for L_y were analyzed.

Again, note that this _ implies that the resistance to heat flow is equal in both the x ÷ and

y+ directions. The sensitivity coefficients calculated using the experimental parameters

around the maximum determinant region for all three L_y-r,_y combinations are shown in

Figs. 5.45, 5.46, and 5.47. In Fig. 5.45 (L_y = 0.048), it is seen that having a small

thickness in the x ÷ direction creates difficulty in the estimation of ky.¢, where the

sensitivity coefficient is essentially zero for the entire experimental time. This result is

consistent with that obtained for Configuration 1 at a similar L_ ratio. However, when

Lxy is increased to 0.5 or 1.0 (Figs. 5.46 and 5.47, respectively), the ky.¢, sensitivity

coefficients are of approximately the same magnitude, only different in sign. However,

this magnitude is still small and therefore, neither an L_ of 0.5 or 1.0 is the optimal

value. The optimal L_y may lie between these values, but the exact determination would

require further analysis.

The last combinations of L_y'S and r_

to 0.048, 0.5, and 1.0, with ruy equal to 1/7.

for Configuration 2 were again, L_ equal

Now, the effective thermal conductivity

perpendicular to the fibers (in the direction of heat flow), kx.e_ is 7 times larger than the

thermal conductivity parallel to the fibers, ky.e:r The sensitivity coefficients for all three

combinations, L_y equal to 0.048, 0.5, and 1.0, were calculated using the optimal
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experimental parameters determined around the maximum determinant region. These

results are shown in Figs. 5.48, 5.49, and 5.50, respectively. From each of these figures,

the same results are seen as for Configuration 1, where the best experimental design

consisted of a larger thickness in the x ÷ direction (a Lxy of 1.0), allowing more heat to be

dissipated in the direction perpendicular to the applied heat flux. This is evident by the

larger sensitivity coefficient for ky._, when L,_ = 1.0 (Fig. 5.50) than when L_y equals either

0.5 (Fig. 5.49), where the magnitude of the coefficient is 0.1, or 0.048 (Fig. 5.48), where

the coefficients are essentially zero. Recall that this zero coefficient results for L_y =

0.048 because the sample is very thin in the direction of heat transfer, x ÷ (and the

direction of the larger effective thermal conductivity). Therefore, the majority of the heat

is conducted along the x ÷ axis, causing very small temperature variations to occur along

the y÷ axis, and as a result, the estimation of ky.,_, becomes difficult.

144



4_

O
r..)

r_
o_

O

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

i

.f'_

/ _'.\

................. I" ....................... L-S_ :_'__ :..---_ .__ . _..,,.._ ....

_\.\ / . ,/ • /

(Xk_-_)÷

(Xky¢) ÷

(Xc¢) ÷

L _m

0 1 2 3 4 5 6

Dimensionless Experimental Time, (tN) +

Figure 5.48. Sensitivity Coefficients for Configuration 2 Using a Lxy (LxlLy) of 0.048 and r_y

(ky.ejk..eZ) of 1/7.



i-.a

4_
Oh

0.3

0.2

0.1

._ 0.0

-0.1

_ -0.2

•:_ -0.3
-0.4

-0.5

_ -0.6
-0.7

/._ "'x N

I.I \ x

../,j "t /

(x_._) ÷

....... (Xky_)+
(Xc_) +

__.__t ....... , I .. _ . 1 .......... I , I ........ j ....... I ....

0 1 2 3 4 5 6

Dimensionless Experimental Time, (tN) ÷

Figure 5.49. Sensitivity Coefficients for Configuration 2 Using a Lxy (Lx[Ly) of 0.5 and r_y
(ky_e_kx.eff)'of 1/7.

1



0.3

0.2

0.1

_, 0.0
O

w -0.1

•_ -0.2
O0

-0.3

"_ -0.4
O
O_

.I -0.5
-0.6

-0.7

i [ t '"

/
\

I" \

I ""

i

I

_\\ /'/'/" - .... ,.

(X_-_) +

....... (Xk_¢)÷

....... (Xc_)"

..... A_ • I ........... _ .... I _ I ,., I , I ........._ ,, J

0 1 2 3 4 5 6

Dimensionless Experimental Time, (tu) ÷

Figure 5.50. Sensitivity Coefficients for Configuration 2 Using a L_y (LilLy) of 1.0 and _y

(ky__/k___.g)of 1/7.



Chapter 6

Conclusions and Summary

The primary objectives of this study were to develop optimal experimental designs

to be used for the estimation of thermal properties of composite materials. This includes

both one-dimensional (isotropic) and two-dimensional (anisotropic) analyses. Experiments

were then conducted for the one-dimensional case, using the optimal design, to estimate

the effective thermal conductivity perpendicular to the fibers and the effective volumetric

heat capacity of a composite consisting of IM7 graphite fibers and a Bismaleimide epoxy

matrix. The estimation procedure used was the modified Box-Kanemasu method. The

following conclusions can be made based on the obtained results.

6.1 Optimal Experimental Designs

In this investigation, optimal experimental designs were determined for both one-

dimensional and two-dimensional heat conduction processes. In the two-dimensional

analysis, two different configurations were investigated, both allowing for the estimation
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of the effectivethermal conductivity in two directionsandthe effective volumetric heat

capacity.

6.1.1 One-Dimensional Optimal Experimental Design

For the one-dimensional experimental design, three experimental parameters were

optimized: dimensionless heating time, temperature sensor location, and dimensionless

experimental time. The following conclusions can be made based on the results obtained

for the specific geometry and boundary conditions used in this analysis:

1) The optimal dimensionless heating time is 2.2. However, the maximum

determinant curve had a rather flat peak between heating times of 2.0 and 2.5.

Therefore, any values within this range can be used.

2) The optimal temperature sensor location is at the heated surface.

3) The optimal dimensionless experimental time is approximately 5.0. Note however,

that this is a conservative choice.

6.1.2 Two-Dimensional Optimal Experimental Designs

For the two-dimensional experimental design, two configurations were analyzed.

Both configurations had a heat flux applied over a portion of one boundary, with the

remainder of the boundary insulated. In addition, Configuration 1 had known, constant

temperatures at the remaining three boundaries, while the second configuration had a

known constant temperature at the boundary opposite to the heat flux and insulated

conditions at the remaining two boundaries. For each configuration, the optimal
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experimentalparametersdeterminedincludethe temperaturesensorlocation (xs÷,y,+),the

dimensionlessheating time, the location of the heat flux, and the dimensionless

experimentaltime. Basedon theobtainedresultsfor thespecificgeometryandboundary

conditionsusedin this analysis,thefollowing conclusionscanbe made:

6.1.2.1 Conclusionsfor Configuration1

1)

2)

3)

4)

The optimal dimensionless heating time is 1.4.

The optimal temperature sensor location occurs at a xs÷ of 0.0 (or at the heated

surface) and a ys+ of 0.13 (13% of Ly from the bottom edge).

The optimal location of the heat flux is across the entire y÷ boundary (Le.I+=I.0).

The optimal dimensionless experimental time is approximately 4.0. Note however,

that this is a conservative choice.

6.1.2.2 Conclusions for Configuration 2

1) The optimal dimensionless heating time is 1.55.

2) The optimal temperature sensor location occurs at a x, ÷ of 0.0 (or at the heated

surface) and a ys ÷ of 0.77 (77% of Ly from the bottom edge).

3) The optimal location of the heat flux is across 89% of the y+ boundary

(Le,2+--0.89).

4) The optimal dimensionless experimental time is approximately 4.0. Again, this

is a conservative value.

The following conclusion can also be made when comparing the two configurations:
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1) Configuration 1 should be utilized when estimating kx.e_ ky.e_ and Ce_,

simultaneously, increasing the accuracy of the resulting property estimates.

6.2 Thermal Property Estimates

The estimation of the thermal properties, namely the effective thermal conductivity

perpendicular to the fibers and the effective volumetric heat capacity, was conducted for

the one-dimensional analysis using the modified Box-Kanemasu method. This estimation

procedure requires both measured and calculated temperatures. The measured

temperatures were obtained from experiments conducted using the optimal experimental

parameters. The following conclusions can be made based on the results of this portion

of the investigation:

1)

2)

3)

4)

5)

6)

The effective thermal conductivity perpendicular to fibers (kx._) is 0.52 W/m°C.

The effective volumetric heat capacity (Ce#) is 1.48 MJ/m3°C.

The estimated parameters are both reliable, as shown by the small confidence

intervals and the Root Mean Square values.

The estimates for kx.,_, are more accurate than for Ce_

The sequential estimates converge to a steady value, indicating that the heat

conduction model and experimental design are satisfactory.

No bias error in the calculated temperatures is apparent.
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Chapter 7

Recommendations

The estimation procedure used in this investigation to determine the effective

thermal conductivity perpendicular to the fiber axis and the effective volumetric heat

capacity proved to be quite accurate. However, because the problem had been simplified

by conducting the required experiments at room temperature, the actual environmental

conditions that many composites, especially in aerospace vehicles, are subjected to have

not been accurately described. These operating conditions usually occur over extreme

temperature ranges, resulting in temperature dependent thermal properties. Therefore, in

order to accurately determine the temperature distributions within these structures during

actual operational conditions, it is necessary to characterize this temperature dependence.

The estimation procedure can be modified to include this dependence by assuming a

functional relationship between the thermal properties and temperature. For example, the

thermal conductivity can be approximated by a piece-wise linear function with

temperature: /TmT-_ TiTi))
k,_ = k, + (k m - k,) , (7.1)
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where ki and ki+l are the coefficients to be estimated. The mathematical model can now

be modified to include temperature dependent properties and the least squares function

given in Eq. (3.33) can be minimized with respect to ki and ki+l.

In addition, it is also recommended that the results of the two-dimensional

optimization procedure be verified. This can be done by conducting experiments for the

two configurations using both the optimal experimental parameters and arbitrary

experimental parameters. The measured temperatures will then be utilized in the

estimation procedure to determine the thermal properties, k:,._ ky_e_ and Ce_ The

estimates obtained using the experiments conducted with the optimal parameters should

provide the smallest confidence intervals. (Recall that the optimization procedure selected

for this study has the effect of minimizing the confidence intervals of the estimated

parameters).

The Box-Kanemasu method could also be implemented to determine the thermal

properties using both configurations simultaneously. Based on the magnitude of the

sensitivity coefficients, temperature measurements from Configuration 2 would be used

to estimate kx.¢ and C,_ while ky.¢ would be estimated using measurements taken from

Configuration 1. Using both configurations together will then supply the most accurate

estimates for all three thermal properties.

Other properties could also be estimated, such as the thermal contact resistance

between composite components. Here, the least squares function would be minimized

with respect to the contact resistance. Furthermore, efforts could be taken for the analysis

of complex structures.
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Appendix A

The FORTRAN program 1DOPT.FOR

This program, 1DOPT.FOR, is used to calculate the maximum determinant value

for the one-dimensional analysis, and to determine the corresponding optimal experimental

parameters.

C

PROGRAM ONEDOPT

Written by Debbie Moncmm_ 1993
DOUBLE PRECISION BETAM,BETA2M, SUMT,SUMC,SUMK

DOUBLE PRECISION FF1,FF2,BETA2(0:1000),M,TIME,TIMEH

DOUBLE PRECISION BETA(0:1000),TT, X1T,X2T,INCRX2,PI

DOUBLE PRECISION Xi, TI_X1,X2,TI'IME,DELTA,INCRET

DOUBLE PRECISION TMAX,D,XTXll,XTX12,XTX22,INCRX1

COMMON Xi,TIME,TIMEH

OPEN(UN_ = 15, FILE ='TJ)AT', STATUS='UNKNOWN')
OPEN(UNIT = 20, FILE ='X1.DAT', STATUS='UNKNOWN')

OPEN(UNIT = 25, FILE ='X2.DAT', STATUS='UNKNOWN')

OPEN(UNIT = 30, FILE ='DxlJ)AT', STATUS ='UNKNOWN')

OPEN(UNIT = 35, FILE = 'DMAXI)AT', STATUS=' NKNOWN')

PI =DACOS(-1 J)0)
DELTA = 0.0250D0

TYIME = 6.d0

Xi = 0.0D+0

DO 7 TIMEH = DELTA, qTIME, DELTA
TMAX = 0.0D0

DMAX = 0.0D0

XTXll = 0.0D0

XTX12 = 0.0D0
XTX22 = 0.0D0

T]? = 0.0D+0

X1T = 0.0D+0

X2T = 0.0D+0
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DO 20, TIME = DELTA, THME, DELTA

CALL MODEL(TF)

CALL SENS(X1T, X2T)
XTXll=XTXll+ X1T * X1T

XTX12=XTX12+ X1T * X2T

XTX22=XTX22+ X2T * X2T

C FIND TMAX

IF(TT.GT.TMAX)TMAX = TF

D=(1.0D0/(TMAX*TMAX*TIME/DELTA))* "2"

+ (XTX 1l*XTX22-XTX 12*XTX 12)
C FIND DMAX

IF(D.GE.DMAX) THEN
DMAX = D

ENDIF

WR1TE(15,12)TIME/DELTA,TIME,TT

WRrrE(20,12)TtME,X1T
WRITE(25,12)TIME,X2T

WRITE(30,40) TIME,D

40 FORMAT(IX, D10.5, 4X, D12.5)

12 FORMAT(2(1X,D 12.4),4X,D 12.5)
14 FORMAT(1X,D12.4,3(4X,D12.5))
20 CONTINUE

WR1TE(35,8)DMAX,TIMEH

8 FORMAT(1X,2D15.6)
7 CONTINUE

CLOSE(15)

CLOSE(20)

CLOSE(25)

CLOSE(30)

CLOSE(35)
STOP

END

C Subroutine to calculate the dimensionless temperature

SUBROUTINE MODELfrD

DOUBLE PRECISION FF1,BETA2M,TIME,TIMEH,T1,PI

DOUBLE PRECISION FT2,INCRET,SUMT_Xi,BETAM_I,Tr

DOUBLE PRECISION BETA2(0:1000), BETA(0:1000)

COMMON Xi,TIME,TIMEH

PI =DACOS(-lJ)0)
SUMT = 0.0D0

DO 10, M -- 1, 1000, 1

BETA(M) = (M - 0.5D0)*PI

BETA2(M) = BETA(M)**2.0D+0

BETAM = BETA(M)

BETA2M = BETA2(M)

FF1 = EXP(-BETA2M * TIME)

IF (TIME.LE.TIMEH) THEN
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T1 = FF1

ELSE

FF2 = EXP(-BETA2M *(TIME - TIMEH))
T1 = FF1-FF2

ENDIF

INCRET = TI*COS(BETAM*Xi)/BETA2M
IF(M.NE.1) THEN

IF(AB S(INCRET/SUMT).LT.1.0D-20) THEN
GO TO 15

ENDIF

ENDIF

SUMT = SUMT + INCRET

CONTINUE

IF(TIME.LE.TIMEH) THEN
TI7 -- 1.0D+0 - Xi - 2.0D+0*SUMT

ELSE

"IT = -2.0D+0*SUMT
ENDIF

RETURN

END

C Subroutine to Calculate the dimensionless Sensitivity Coefficients

SUBROUTINE SENS(XlT, X2T)

DOUBLE PRECISION TIME,TIMEH,BETAM,BETA2M, SUMK,Xi,M

DOUBLE PRECISION SUMC,FF1,FF2,Xl,X2,INCRXl,INCRX2

DOUBLE PRECISION BETA(0:1000),BETA2(0:1000),PI

DOUBLE PRECISION X1T, X2T
COMMON Xi,TIME,TIMEH

PI =DACOS (- 1.D0)
SUMK = 0.0D+0

SUMC = 0.0D+0

DO 30, M = 1, 1000, 1

BETA(M) = (M - 0.5D0)*PI

BETA2(M) = BETA(M)**2.0D+0

BE'TAM = BETA(M)

BETA2M = BETA2(M)

FF1 = EXP(-BETA2M * TIME)

IF(TIME.LE.TIMEH) THEN

Xl = FF1 * (1/BETA2M + TIME)
X2 = TIME*FF1

ELSE

FF2 = EXP(-BETA2M *(TIME - TIMEH))

Xl = (1/BETA2M+TIME)*FFI-(1/BETA2M+(TIME-TIMEH))*FF2

X2 = TIME*FF1 - (TIME-TIMEH)*FF2
END IF

INCRX1 -- XI*COS(BETAM * Xi)

INCRX2 = X2*COS(BETAM * Xi)

IF(M.NE.1) THEN
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IF(ABS(INCRXI/SUMK).LT.1.0D-20.AND.
AB S(INCRX2/SUMC).LT. 1.0D-20) THEN

GO TO 16
END IF

END IF
SUMK = SUMK + INCRX1
SUMC = SUMC + INCRX2

CONTINUE

IF(TIME.LE.TIMEH) THEN
XlT = -(1.0D0 - Xi) + 2.0D0*SUMK
X2T = -2.0I)0 * SUMC

ELSE
XlT = 2.0D0*SUMK
X2T = -2.0D0 * SUMC

END IF
RETURN
END
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Appendix B

The FORTRAN program 2DC1OPT.FOR

This program, 2DC1OPT.FOR, is used to calculate the maximum determinant

value for Configuration 1 of the two-dimensional analysis, and to determine the

corresponding optimal experimental parameters.

C

C
C

PROGRAM CFONEOPT

Written by Debbie Moncman, 1994
DOUBLE PRECISION PI,SUMC,SUMKX,SUMKY
DOUBLE PRECISION Lr,K, BETAN, BETAN2,EXPON,TERM1,TX
DOUBLE PRECISION FF1,XKX,XKY,XC,FF2,CONST,INCRKX,INCRKY, INCRC
DOUBLE PRECISION TERM2,TERM3,SUMT, TEMP,INCRT
DOUBLE PRECISION EXPONTM,EXPONTH, SSSUMT, SSINCRT

DOUBLE PRECISION SSSUMKX, SSINCRKX,SSSUMKY,SSINCRKY
DOUBLE PRECISION TERM4_X,Y,Yp,TERM5,TMAX
DOUBLE PRECISION X1TY_2T,X3T, XTX11,XTX123(rx13,XTX22
DOUBLE PRECISION XTX23,XTX33,DET,D,DMAX,THOPT

DOUBLE PRECISION TIME, TIMEH,TTIME,DELTA,TIMET
INTEGER M,N

OPEN(UNIT=40,FILE='TCTL1K17.DAT',STATUS='UNKNOWN')
OPENCtJNIT=65,FILF__'d.DAT',STATUS='UNKNOWN')
PI = DACOS(-1.0D0)
DELTA = 0.05D0
TUME = 6.0D0
K -- 7.0d0
Lr = 0.048276D0
SSSUMT = 0.D0

DO 2, M = 1, 3000
Y = 0.5D0

Yp = 1.0D0
X=O.DO

TERM1 = DSIN(M*PI*Y)

TERM2 = 1.D0 - DCOS(M*PI*Yp)
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IF(TERM1.EQ.0..OR.TERM2.EQ.0.) GOTO 2
TERM3 = M**2*PI**2*Lr**2*K

DO 3, N = 1, 3000
BETAN = PI*(N-0.5D0)
BETAN2 = BETAN*BETAN
TERM4 = TERM3 + BETAN2

TERM5 = DCOS(BETAN*X)
IF(TERM5.EQ.0.) GOTO 3

SSINCRT=TERMI*TERM2*TERM5*(1.D0/(M*TERM4))
SSSUMT = SSSUMT + SSINCRT

CONTINUE
CONTINUE

TMAX = SSSUMT*(4.D0/PI)
DO 150, Yp = 0.1D0, 1.0D0, 0.05D0
DO 125, X -- 0.0D0, 1.0D0, 0.05D0
DO 100, Y = 0.0D0, 1.0D0, 0.05D0

DMAX = 0.D0
SSSUMT = 0.0D0
SSSUMKX = 0.0D0
SSSUMKY = 0.D0

DO 400, M = 1, 3000

TERM1 -- DSIN(M*PI*Y)
TERM2 = 1.D0 - DCOS(M*PI*Yp)

IF(TERM1.EQ.0..OR.TERM2.EQ.0.) GOTO 400
TERM3 = M**2*PI**2*Lr**2*K

DO 300, N = 1,3000
BETAN = PI*(N-0.5D0)
BETAN2 = BETAN*BETAN
TERM4 = TERM3 + BETAN2

TERM5 = DCOS(BETAN*X)
IF(TERM5_EQ.0.) GOTO 300

SSINCRT=TERM I*TERM2*TERM5 *(1.D0/(M*TERM4))
SSINCRKX = TERMI*TERM2*DCOS(BETAN*X)*(1.D0/(M*TERM4))

*((TERM3/TERM4)- 1.D0)
SSINCRKY = TERMI*TERM2*DCOS(BETAN*X)*(1.D0/(M*TERM4))

*(-TERM3/TERM4)
SSSUMT -- SSSUMT + SSINCRT
SSSUMKX = SSSUMKX + SSINCRKX
SSSUMKY = SSSUMKY + SSINCRKY

CONTINUE
CONTINUE

DO 650, TIMEH = DELTA, THME, DELTA
XTXll = 0.D0

XTX12 = 03)0
XTX13 = 0.D0
XTX22 = 0.D0
XTX23 -- 03)0
XTX33 = 0.D0
SUMT = 0.0D0
SUMC = 0X)0
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SUMKX = 0.D0
SUMKY = 0.D0

DO 200, TIME = DELTA, TrlME, DELTA

DO 500, M = 1, 10000,1

TERM1 = DSIN(M*PI*Y)

TERM2 = 1.D0 - DCOS(M*PI*Yp)

IF(TERM 1.EQ.0..OR.TERM2.EQ.0.)GOTO 500
TERM3 = M**2*PI**2*Lr**2*K

DO 600, N = 1, 1000, 1

BETAN = PI*(N-0.5D0)
BETAN2 = BETAN*BETAN

TERM4 = TERM3 + BETAN2

TERM5 = DCOS(BETAN*X)

IF(TERM5.EQ.0.)GOTO 600
EXPON = TERM4

EXPONTM -- EXPON*TIME

IF(TIME.LE.TIMEH) THEN

IF(EXPONTM.LT.225.) THEN

FF1 = DEXP(-EXPONTM)
ELSE

FF1 = 03)0

ENDIF

TX = FF1

XKX = BETAN2*TIME*FFI-((TERM3/EXPON)-I.D0)*FF1

XKY = TERM3*TIME*FF1 + ((TERM3/F_.XPON)*FF1)
XC = -EXPON*TIME*FF1

ELSE

EXPONTH = (EXPON*(TIME-TIMEH))

IF(EXPONTHLT.225..AND.EXPONTM.LT.225.)THEN

FF1 = DEXP(-EXPONTM)

FF2 = DEXP(-EXPONTH)

ELSE IF(EXPONqT-I.LT.225..AND.EXPONTM.GE.225.) THEN

FF2 = DEXP(-EXPONTH)
FF1 = 0.D0

ELSE IF(EXPONTH.GE.225..AND.EXt_NTM.LT.225.) THEN

FF1 = DEXP(-EXPONTM)
FF2-- 0.D0
ELSE

FF1 = 0.D0

FF2= 0.D0

ENDIF

TX = FF2 - FF1

XKX = ((TERM3/EXPON)-I.D0)*(FF2-FF1) +

BETAN2*TIME*FF1 - BETAN2*('rlME-TIMEH)*FF2

XKY = (-TERM3/EXPON)*(FF2-FF1) + TERM3*TIME*FF1

- TERM3* (TIME-TIMEH) *FF2

XC = EXPON*(TIME-TIMEH)*FF2 - EXPON*TIME*FF1
ENDIF

CONST -- TERMI*TERM2*TERM5*(1.D0/(M*TERM4))
INCRT = TX*CONST
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INCRC = XC*CONST

INCRKX = XKX*CONST

INCRKY = XKY*CONST

IF(SUMT.NE.0..AND.SUMKX.NE.0..AND.SUMKY.NE.0..AND.

+ SUMC.NE.0.)THEN

IF(AB S(INCRT/SUMT).LT. 1.D-20.AND.AB S (INCRKX/SUMKX).LT.

+ 1.D-20.AND.AB S(INCRKY/SUMKY).LT. 1 .D-20.AND.ABS

+ (INCRC/SUMC).LT. 1.D-20) THEN
GO TO 410

ENDIF

END/F

SUMT = SUMT + INCRT
SUMC = SUMC + INCRC

SUMKX = SUMKX + INCRKX

SUMKY -- SUMKY + INCRKY

CONTINUE

IF(N.EQ. 1)THF_aN

IF(ABS(INCRKX).LT.1.D-20.AND.ABS(INCRKY).LT.1.D-20

+ .AND.AB S(INCRC).LT.1.D-20.AND.AB S(INCRT) LT.

+ 1.D-20)THEN
GO TO 450

ENDIF

ENDIF

CONTINUE

IF(TIME.LE.TIMEH) THEN

TEMP = (4.D0/PI)*(SSSUMT-SUMT)

X3T = (4.0D0/PI)*SUMC

(4.D0/PI)*(SSSUMKX + SUMKX)

(4.D0/PI)*(SUMKY + SSSUMKY)

X1T =

X2T =

ELSE

TEMP

X3T =

X1T =

X2T =

ENDIF

= (4.0D0/PI)*SUMT

(4.D0/PI)*SUMC

(4.D0/PI)*SUMKX

(4J)0/PI)*SUMKY

WRITE(40,14)y, TIME,TEMP, xlt, x2t,x3t

FORMAT(lx,f5.2,5el3.5)
XlT = XlT/TMAX

X2T = X2T/TMAX

X3T = X3T/TMAX

XTXll = XTXll + XlT*XlT

XTXl2 = XTXl2 + XlT*X2T

XTXl3 = XTXl3 + XlT*X3T

XTX22 = XTX22 + X2T*X2T

XTX23 = XTX23 + X2T*X3T

XTX33 = XTX33 + X3T*X3T

DET = XTXll*(XTX22*XTX33 - XTX23*X'ITC23) - XTX12*(XTX12*XTX33

- XTX13*XTX23) + XTX13*(XTX12*XTX23 - XTX13*XTX22)

D = (1J)0/(TIMF_/DELTA))**3*DET

IF(D.GE.DMAX) THEN
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DMAX= D
THOPT= TIMEH

TIMET = TIME

ENDIF

SUMT = 0.0D0

SUMC = 0.D0

SUMKX = 0.D0

SUMKY = 0.D0
CONTINUE

CONTINUE

WRITE(65,110)X,Y,Yp,DMAX,THOPT,TIMET
FORMAT( 1X,3(2X,F6.3),3E13.6)
CONTINUE

CONTINUE

CONTINUE

STOP

END
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Append_ C

The FORTRAN program 2DC2OPT.FOR

This program, 2DC2OPT.FOR, is used to calculate the maximum determinant

value for Configuration 2 of the two-dimensional analysis, and to determine the

corresponding optimal experimental parameters.

C
PROGRAM cFrwooPT

Written by Debbie Moncman, 1994
DOUBLE PRECISION PI,SUMC,SUMKX,SUMKY

DOUBLE PRECISION Lr,K, BETAN,BETAN2,TERM1,T1

DOUBLE PRECISION FF1,XKX,XKY,XCP,FF2,CONST,INCRKX,INCRKY, INCRC
DOUBLE PRECISION TERM2,TERM3,SUMT, TEMP,INCRT, KYN, CPN
DOUBLE PRECISION EXPONTM,EXPONTH,SSSUMT, SSINCRT
DOUBLE PRECISION SSSUMKX, SSINCRKX, SSSUMKY,SSINCRKY,SSTEMP2
DOUBLE PRECISION TERM4,X,Y,Xp,TMAX,TEMP1,TEMP2,SSTEMP1
DOUBLE PRECISION X1T,X2T,X3T, XTX11,XTX12,XTX13,XTX22

DOUBLE PRECISION XTX23,XTX33,DET,D,DMAX,THOPT,SSUMTN
DOUBLE PRECISION TIME, TIMEH,TI'IME,DELTA,limet, term5
INTEGER M,N

OPEN(UNIT--40,FILE=' TIL 1K17.DAT' ,STATUS='UNKNOWN')
OPEN(UNIT=65,FIIaE='DIVARYY.DAT',STATUS='UNKNOWN')
PI = DACOS(-1.0D0)
DELTA = 0.05D0
TTIME = 6.0D0
K = 7.0d0
Lr = 0.048276D0
SSSUMT = OJ_O
SSUMTN = 0J)0

DON= 1, 3000,1
Y = 0.0D0

Xp = 1.0D0
X = 0.5D0
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BETAN = PI*fN-0.5D0)
BETAN2 = BETAN*BETAN

INCRT = DCOS(BETAN*Y)/BETAN2

SSUMTN = SSUMTN + INCRT
ENDDO

SSTEMP1 = 2.D0*Xp*SSUMTN
DO 2, M = 1, 3000

Y = 0.0D0

Xp = 1.ODO
X = 0.5D0

TERM1 = DCOS(M*PI*X)

TERM2 = DSIN(M*PI*Xp)

IF(TERM1.EQ.0..OR.TERM2.EQ.0.) GOTO 2
TERM3 = M**2*PI**2*Lr**2*K

DO 3, N = 1, 3000, 1

BETAN = PI*(N-0.5D0)
BETAN2 -- BETAN*BETAN

TERM4 = TERM3 + BETAN2

TERM5 = DCOSfBETAN*Y)
IF(TERM5.EQ.0.) GOTO 3

SSINCRT = TERMI*TERM2*tenn5*(I_0/(M*TERM4))
SSSUMT = SSSUMT + SSINCRT

CONTINUE

CONTINUE

SSTEMP2 -- 4.0D0/PI*SSSUMT

TMAX = SSTEMP2 + SSTEMP1

DO 150, Xp = 0.1D0, 1.05D0, 0.05D0

DO 125, Y = 0.0D0, 1.0D0, 0,05D0

DO 100, X = 0.0D0, 1.0D0, 0.05D0
DMAX = 0.D0

SSSUMT = 0.0D0

SSSUMKX = 0.0D0

SSSUMKY = 0.D0

DO 400, M = 1,3000

TERM1 = DCOS(M*PI*X)

TERM2 = DSIN(M*PI*Xp)

IF(TERM1.EQ.0..OR.TERM2.EQ.0.) GOTO 400
TERM3 = M**2*PI**2*Lr**2*K

DO 300, N = 1, 3000, 1

BETAN = PI*(N-0.5D0)
BETAN2 = BETAN*BETAN

TERM4 = TERM3 + BETAN2

TERM5 = DCOS(BETAN*Y)

IF(TERM5.EQ.0.) GOTO 300

SSINCRT = TERMI*TERM2*term5*(1.D0/(M*TERM4))

SSINCRKX -- TERMI*TERM2*term5*(1.D0/(M*TERM4))

*(-TERM3/TERM4)

SSINCRKY = TERMI*TERM2*term5*(1.D0/(M*TERM4))
* ((TERM3/TERM4)- 1.D0)

SSSUMKX -- SSSUMKX + SSINCRKX
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SSSUMKY = SSSUMKY + SSINCRKY

SSSUMT = SSSUMT + SSINCRT

CONTINUE

CONTINUE

DO 650, TIMEH = DELTA, THME, DELTA
XTXll = 0.D0

XTX12 = 0.D0

XTX13 = 0.D0

XTX22 = 0.D0

XTX23 -- 0.D0

XTX33 = 0.D0

SUMT = 0.0D0

SUMC = 0.D0

SUMKX = 0.D0

SUMKY = 0.D0

DO 200, TIME -- DELTA, TFIME, DELTA
DON= 1, 500,1

BETAN = PI*(N-0.5D0)
BETAN2 = BETAN*BETAN

EXPONTM = BETAN2*TIME

IF(TIME.LE.TIMEH) THEN

IF(EXPONTM.LE.225.) THEN

FF1 = DEXP(-EXPONTM)
ELSE

FF1 = 0.D0

ENDIF

T1 = (1.D0 - FF1)
XCP = TIME*FF1

XKY = (-1.D0/BETAN2) + (TIME +(1.D0/BETAN2))*FF1
ELSE

EXPONTH = BETAN2*(TIME-TIMEH)

IF(EXl_NTH.LE.225..AND.EXPONTM.LE.225.) THEN

FF1 -- DEXP(-EXPONTM)

FF2 = DEXP(-EXPONTH)

ELSE IF(EXPONTH.GT.225 ..AND.EXPONTM.LE.225.)THEN
FF1 = DEXP(-EXPONTM)
FF2 = 0.D0

ELSE IF(EXl:_NTH.LE.225..AND.EXPONTM.GT.225.) THEN
FF1 = 0.D0

FF2 = DEXP(-EXPONTH)

ELSE IF(F_JfPONTH.GT.225..AND.EXPONTM.GT.225.) THEN
FF1 = 0.D0

FF2 = 0.D0

ENDIF

T1 = FF2 - FF1

XKY -- ((1.D0/BETAN2)+TIME)*FF1 - ((TIME-TIMEH)

+ (1.D0/BETAN2))*bF2

XCP = TIME*FF1 - ME-TIMEH)*FF2
ENDIF

INCRT = TI*DCOS(BETAN*Y)/BETAN2
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INCRKY = DCOS(BETAN*Y)*XKY

INCRC = XCP*DCOS(BETAN*Y)
IF(SUMT.NE.0..AND.SUMKY.NE.0..AND.SUMC.NE.0.)THEN

IF(AB S(INCRT/SUMT).LE.1 .D- 10.AND.AB SONCRKY/SUMKY)
.LE.1.D- 10.AND.AB S(INCRC/SUMC).LE.1.D- 10) THEN

GOTO 13
ENDIF

ENDIF

SUMT = SUMT + INCRT
SUMKY = SUMKY + INCRKY
SUMC = SUMC + INCRC

ENDDO

TEMP1 = 2.D0*Xp*SUMT

KYN = 2.D0*Xp*SUMKY
CPN = -2.D0*Xp*SUMC
SUMT = 0.D0
SUMC = 0.D0
SUMKY = 0.D0

DO 500, M = 1, 10000,1

TERM1 = DCOS(M*PI*X)

TERM2 = DSIN(M*PI*Xp)
IF(TERM1.EQ.0..OR.TERM2.EQ.0.) GOTO 500

TERM3 = M**2*PI**2*Lr**2*K

DO 600, N = 1, 1000, 1
BETAN = PI*(N-0.5D0)
BETAN2 -- BETAN*BETAN

TERM4 = TERM3 + BETAN2

TERM5 = DCOS(BETAN*Y)
IF(TERMS.EQ.0.) GOTO 600

EXPONTM = TERM4*TIME

IF(TIME_LE.TIMEH) THEN

IF(EXPONTM.LT.225.) THEN
FF1 = DEXP(-EXPONTM)
ELSE
FF1 -- 0.D0
ENDIF

T1 = FF1

XKX = (TERM3/TERM4)*FF1 + TERM3*TIME*FF1
XKY = ((I_ERM3/TERM4)-I.D0)*(-FF1)+BETAN2*TIME*FF1
XCP = -(TERM4*TIME*FF1)
ELSE

EXPONTH = TERM4*(TIME-TIMEH)
IF(EXPONTH.LE.225 ..AND.EXPONTM.LE.225.) THEN
FF1 = DEXP(-EXPONTM)
FF2 = DEXP(-EXPONTH)
ELSE IF(EXPONTH.GT.225..AND.EXPONTM.LE.225.)THEN
FF2 -- 0.D0

FF1 = DEXP(-EXPONTM)
ELSE IF(EXPONTH.LE.225..AND.EXPONTM.GT.225.) THEN
FF1 = 0.D0
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FF2 = DEXP(-EXI_NTH)

ELSE IF(E, XPONTH.GT.225..AND.EXPONTM.GT.225.) THEN
FF1 = 0.D0

FF2 -- 0.D0

ENDIF

T1 = FF2 - FF1

XKX = (-TERM3/TERM4)*(FF2-FF1) + TERM3*TIME*FF1

+ - TERM3* (TIME-TIMEH) *FF2

XKY = ((TERM3/TERM4)-I.D0)*(FF2-FF1) + BETAN2*TIME*FF1

+ - B ETAN2 *(TIME-TIMEH) *FF2

XCP -- TERM4*(TIME-TIMEH)*FF2 - TERM4*TIME*FF1
ENDIF

CONST = TERMI*TERM2*TERM5*(1.D0/(M*TERM4))
INCRT = TI*CONST

INCRKX = XKX*CONST

INCRKY = XKY*CONST

INCRC = XCP*CONST

IF(SUMT.NE.0..AND.S KX.NE.0..AND.SUMKY.NE.0..AND.

+ SUMC.NE.0.)THEN

IF(AB S(INCRT/SUMT).LT. 1.D-20.AND.AB S(INCRKX/SUMKX).I.,T.

+ 1 .D -20. AND. AB S (INCRKY/S UMKY) .L T. 1 .D - 20. AND.AB S

+ ONCRC/SUMC).LT. 1.D-20) THEN
GO TO 410

ENDIF

ENDIF

SUMT = SUMT + INCRT

SUMC = SUMC + INCRC

SUMKX = SUMKX + INCRKX

SUMKY = SUMKY + INCRKY

CONTINUE

IF(N.EQ.1)THEN

IF(ABS(INCRKX).LT.1.D-20.AND.ABSONCRKY)LT. 1.D-20

+ .AND.AB S(INCRC).LT.1.D-20.AND.AB SONCRT).LT.
+ 1.D-20)THEN

GO TO 450

ENDIF

ENDIF

CONTINUE

IF(TIME.LE.TIMEH) THEN

TEMtW2 = (4.D0/PI)*(SSSUMT- SUMT)

X1T = (4.D0/PI)*(SSSUMKX + SUMKX)

X2T = KYN + (4.D0/PI)*(SSSUMKY + SUIvlKY)

X3T = CPN + (4.D0/PI)*SUMC
ELSE

TEMP2 = (4.D0/PI)*SUMT

X1T = (4.D0/PI)*SUMKX

X2T -- KYN + (4.D0/PI)*SUMKY

X3T = CPN + (4.D0/PI)*SUMC
ENDIF

TEMP = TEMPI + TEMP2
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WRITE(40,14)y,TIME,TEMP, x lt,x2t,x3t
format(lx,f5.2,5el3.5)
X1T = X1T/TMAX
X2T = X2T/TMAX
X3T = X3T/TMAX

XTXll = XTXll + X1T*X1T
XTX12 = XTX12 + X1T*X2T
XTX13 = XTX13 + X1T*X3T
XTX22 = XTX22 + X2T*X2T

XTX23 = XTX23 + X2T*X3T
XTX33 = XTX33 + X3T*X3T

DET = XTXll*(XTX22*XTX33 - XTX23*XTX23) - XTX12*(XTX12*XTX33

- XTX13*XTX23) + XTX13*(XTX12*XTX23 - XTX13*XqX22)
D = (1/)0/(TIMF_/DELTA))**3*DET
IF(D.GE.DMAX) THEN

DMAX = D
THOPT = TIMEH
TIMET = TIME

ENDIF
SUMT = O.ODO

SUMC = O.DO
SUMKX = 0.D0
SUMKY = 0.D0
CONTINUE
CONTINUE

WRITE(65,110)Xp, Y,X,DMAX,THOPT,TIMET
FORMAT(1X,3(2X,F6.3),3E13.6)
CONTINUE
CONTINUE
CONTINUE
STOP
END
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Appendix D

The FORTRAN program MODBOX.FOR

This program, MODBOX.FOR, uses the modified Box-Kanemasu method to

estimate the thermal properties.

PROGRAM NLINA

CCCCCCCCC PROGRAM DESCRIPTION CCCCCCCCC

C THIS PROGRAM USES THE MATRIX INVERSION LEMMA (BASED ON
C THE GAUSS LINEARIZATION METHOD) AND THE BOX-KANEMASU
C METHOD TO ESTIMATE THE PARAMETERS OF A GIVEN MODEL.

C

C Written by Debbie Moncman, 1993

C Based on the program, NLINA_OR, by J. V. Beck (1993)
CCCCCCCCC DIMENSION BLOCK CCCCCCCCC

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION T(1500,5),Y(1500),SIG2(1500),B (5),SC(5),A(5),B S(5),

+ VINV(5,5),BS S (5),SUMG(5),R(5,5),EXTRA(20),ERR(1500),

+ PS (5,5),P(5,5),XTX(5,5),XTY(5),SUM(5),VALUEK(5),B SV(5)
CHARACTER*40 INFILE, OUTFIL

C COMMON BLOCK C

COMMON T,N, SC,BS,I, ETA,PS,P,B,A,Y, SIG2_IODL,VINV,NP_EXq]7,A
COMMON/ERROR/ERR

COMMON/MOD/AA,TL,SUM

C DATA BLOCK C

DATA EPSDEN, CRITER/1.0D-30,0.0()01D+0/

C INITIALIZATION BLOCK C

WRITE(*,*)'ENTER THE NAME OF THE INPUT DATA FILE'

READ(*,' (A40)')INFILE

OPEN(8,HLE=_)

C

C

C
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WRITE(*,*)'ENTER THE NAME OF THE OUTPUT FILE'

READ(*,' (A40)')OUTFIL

OPEN(7,FILE=OUqT]L)

C PROCESS BLOCK C

C -- START READING INPUT VALUES
C BLOCK 1

WRITE(7,*)'INPUT QUANTITIES'

READ(8,*) N, NP, NI, MAX1T, MODL, IPRINT

WRITE(7,*)
WRITE(7,*)'BLOCK 1'

WRITE(7,*)

WRITE(7,*)'N - NUMBER OF DATA POINTS (MEASUREMENTS)'
WRITE(7,*)'NP - NUMBER OF PARAMETERS'

WRITE(7,*)'NI - NUMBER OF INDEPENDENT VARIABLES'

WR1TE(7,*)'MAXIT - MAXIMUM NUMBER OF ITERATIONS'

WRITE(7,*)'MODL - MODEL NO.(NEEDED IF SEVERAL MODELS ARE USED)'
WRITE(7,*)'IPRINT - 1 FOR USUAL PRINTOUTS, 0 FOR LESS'

WRITE(7,*)

IF(N.LE.0)THEN
STOP

END IF

WRITE(7,'(/,OX,"N",8X,"NP",8X,"NI",5X,"MAXIT",5X,

+ "MODL",4X,' 'IPR.INT")')

WRITE(7,' (7I 10) ' )N, NP,NI,MAXIT,MODL,IPRINT

C BLOCK 2 (INITIAL PARAMETER ESTIMATES)

WR/TE(7,*)
WRITE(7,*)'BLOCK 2'

WRITE(7,*)

WRITE(7,*)'B(1) ..... B(NP) ARE THE INITIAL PARAMETER ESTIMATES.'

WRITE(7,*)

READ(8,*)(B (I),I= 1,NP)

WR/TE(7,'(10X,"B(",II,") =",F16.5)')(I,B(I),I=I,NP)

C BLOCK 3 (INPUT MEASUREMENTS)
WRITE(7,*)

WRITE(7,*)'BLOCK 3'

WRYrE(7,*)

WRITE(7,*)'J - DATA POINT INDEX'

WRITE(7,*)'Y(J) - MEASURED TEMPERATURE VALUE'

WRITE(7,*)'SIGMA(J) - STANDARD DEVIATION OF Y(J)'

WR1TE(7,*)'T(J,1) - FIRST INDEPENDENT VARIABLE'

wRrrE(7,*)
WRITE(7,' (/,9X,"J",6X,"Y(J)",3X,"SIGMA(J)",6X,

+ "T(J,1)",6X,"T(J,2)")')

DO I1--1,N

READ(8,*)J,Y(J),SIG2(J),(T(J,KT),KT= 1,NI)

WRITE(7,' (I10,7F10.5)')J,Y(J),SIG2(J),(T(J,KT),KT= 1,ND

SIG2(J) = SIG2(J)*SIG2(J)
END DO

C BLOCK 4 (INPUT ANY EXTRA DATA NEEDED IN THE MODEL)
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READ(8,*)IEXTRA
C IEXTRA is the number of constants used in the model such as

C initial temperatures, surface temperatures, or a heat flux.
C It equals 0 for no extra input.

WRITE(7,*)

WR1TE(7,*)'BLOCK 4'
WRITE(7,*)
WRITE(7,*)'IEXTRA - NUMBER OF EXTRA(I) PARAMETERS (0 IF NONE)'
WRITE(7,*)
WRITE(7,' (10X,"IEXTRA =",I10)')IEXTRA
IF(IEXTRA.GE.1) THEN

WRITE(7,*)
WR1TE(7,*)'EXTRA(1) .... ARE EXTRA CONSTANTS USED IN THE MODEL'
WRITE(7,*)

READ(8,*)(EXTRA(I),I= 1,IEXTRA)
WRITE(7,' (' 'EXTRA(",I2,' ') =",F16.5)')

+ (I,EXTRAO),I= 1,IEXTRA)
ENDIF

C End input, begin calculations
WRITE(7,*)
WRITE(7,*)'END INPUT QUANT/TIES, BEGIN OUTPUT CALCULATIONS'
WRITE('/,*)
WRITE(7,*)'SSY - SUM OF SQUARES FOR PRESENT PARAMETER VALUES'
WRITE(7,*)'SSYP - SUM OF SQUARES FOR BOX-KANEMASU PARAMETER VAL.'
WRITE(7,*)' SSYP DECREASES TOWARDS A POSITIVE CONSTANT'
WRITE(7,*)' AND SHOULD BE LESS THAN SSY'

WRITE(7,*)'G - MEASURE OF THE SLOPE, IT SHOULD APPROACH ZERO'
WRITE(7,*)' AT CONVERGENCE'
WR1TE(7,*)'H - SCALAR INTERPOLATION FACTOR; ITS A FRACTION OF'

WR/TE(7,*)' THE GAUSS STEP GIVEN BY THE BOX-KANEMASU METHOD'
WRITE(7,*)
WRITE(7,*)

CCCCCCCC PART I OF PROGRAM (GAUSS METHOD) CCCCCCCCC
******************************************************************

C -- Set the P matrix equal to zero
DO I2=I,NP

DO K2=I,NP

PS(K2,I2)=0
P(K2,I2)=0

ENDDO
ENDDO

DO I3=I,NP

PS (I3,I3)=B(IS)*B (I3)* 1.0D+7
ENDDO

DOK= 1, NP
BS(K)=B(K)

BSV(K)=BS(K)
SUMG(K) = 0.0D+0

ENDDO

C -- Set XTX and XTY sums equal to 0
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DOK= 1, NP

XTY(K) = O.OD+O

DOJ= 1, NP

XTX(J,K) = 0.0D+0
ENDDO

ENDDO

C -- I and MAX arc counters

I=0

MAX=0

100 MAX = MAX + 1

SSY = 0.0D+0

DOI3 = 1, N
I=I3

CALL MODEL

CALL SENS

RESID = Y(I) -ETA

SSY = SSY + RESID*RESID/SIG2(I)

C -- Calculate XTX, XTY, and SUMG (used in the Box-Kanemasu method)
DOK= 1, NP

XTY(K) = XTY(K) + SC(K)*RESID/SIG2(1)

SUMG(K) = SUMG(K) + SC(K)*RESID/SIG2(I)
DOL = 1, NP

XTX(K,L) = XTX(K,L) + SC(K)*SC(L)/SIG2(D
ENDDO

ENDDO

DOK= 1, NP

A(K) = 0.0D+0
ENDDO

C -- Calculate 'A' used in the MIL method

DOK= 1, NP

DOJ= 1, NP

A(K) = A(K) + SC(J)*P(KJ)
ENDDO

ENDDO

DELSUM = 0.0D+0

C -- Calculate 'DELTA' used in the MIL method

DOK= 1,NP

DELSUM = DELSUM + SC(K)*A(K)
ENDDO

DELTA = SIG2(I) + DELSUM
C -- Calculate 'K' used in the MIL method

DOK= 1, NP

VALUEK(K) = A(K)/DELTA
ENDDO

SUMH = 0.0D+0

C -- Calculate 'SUMH' used in 'HU'

DO J = 1, NP

SUMH = SUMH + SC(J)*(B(J) - BS(J))
ENDDO
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HU = Y(I) - ETA - SUMH

C -- Estimated parameters found using the Gauss Method:
DOK= 1, NP

B(K) = B(K) + VALUEK(K)*HU
ENDDO

C -- Calculate the new P matrix

DOU-- 1,NP

DOV= 1,NP

P(U,V) --- PS(U,V) - VALUEK(U)*A(V)
ENDDO

ENDDO

C -- Make the P malrix symmetrical
DO J = 2, NP

JK=J- 1

DOK= 1, JK

P(K,J)=P(J,K)
ENDDO

ENDDO

DO]-- IMP
DOK= IMP

PS(KJ) = P(KJ)
ENDDO

ENDDO

*************************************************************************

C -- Done with Gauss calculations, Print results

IF(IPRINT.GT.0) THEN

IF(LEQ.1) THEN

WRITE('/,*)

WRITE(7,*)'SEQUENTIAL ESTS. OF THE PARAMETERS GIVEN BELOW'

WRITE(7,*)'(THESE EST. ARE FOUND USING THE GAUSS METHOD)'

WRITE(7,'(//,3X,' T',6X,"ETA",5X,"RESIDUALS",7X,

+ "'B (1)",8X,"B(2)",6X,"SC(1)", 6X,"SC(2)")')
END IF

WRITE(7,'(I4,6E12.5)')I, ETA, RESID, (B(IP),IP=I,NP),SC(1)*B(1),

+ SC(2)*B(2)
ENDIF

ENDDO

WRrrE(7,*)
WRITE(*,*)'END BASIC LOOP'

WRITE(7,*)'THE FINAL SEQUENTIAL ESTIMATES WILL NOW BE MODIFIED
+ USING THE BOX-KANEMASU METHOD'

CCCCCCCCC PART II: BOX-KANEMASU MODIFICATION CCCCCCCCC
******************************************************************

C -- Set BSS equal to the initial estimate for that iteration

DOJ = 1, NP

BSS(J) = BS0)
ENDDO

ALPHA = 2.0D+0

AA = 1.1D+0

200 ALPHA = ALPHAJ2.0D+0
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C -- Calculate the parameters using the modified step-size

DOK= 1,NP

BS(K) -- BSS(K) + ALPHA*(B(K) - BSS(K))
ENDDO

CHANGE = 0

G = 0.0D+0

C -- Calculate the slope, G
DO K= 1, NP

DELTAB -- BS(K) - BSS(K)

G = G + DELTAB*SUMG-_)
ENDDO

C -- By the def'mition of G, it should always be positive.
IF (G.LT.0.0D+0) THEN

WR1TE(7,*)'G IS NEGATIVE, TERMINATE CALCULATIONS'
GOTO 1000

ENDIF

SSYP = 0.0D+0

C -- Calculate the new sum of squares based on the modified parameters
DOI3 = 1, N

I=13

CALL MODEL

RESID = Y(I) - ETA

SSYP = SSYP + RESID*RESID/SIG2(I)
ENDDO

IF(SSYP.GT.SSY) THEN

IF (ALPHA,LE0.01D+0) THEN

WRITE(7,250)ALPHA,S SYP,S SY

250 FORMAT(3X,'ALPHA IS TOO SMALL, ALPHA =',F12.6,2X,

+ 'SSYP = ', E15.6, 2X, 'SSY --', E15.6)
GOTO 1000

ELSE

GOTO 200

ENDIF

ENDIF

C -- Calculate SUMCH, used in the following inequality to determine H

SUMCH = SSY - ALPHA*G*(2.0D+0-(1.0D+0/AA))

IF(SSYP.GT.SUMCH) THEN

H -- (ALPHA*ALPHA*G)/(SSYP - SSY + (2.0D+0*ALPHA*G))
ELSE

H = ALPHA*AA
ENDIF

C -- Calculate the final parameter estimates using H.
DO K= 1, NP

B(K) = BSS(K) + H*(B(K) - BSS(K))
ENDDO

C -- Calculate RATIO; if it is less that CRITER (0.0001), then the change

C in the estimated parameters is insignificant and the iterative

C process is terminated. CHANGE is used to determine when all

C parameters stop varying.
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DOJ = 1, NP

RATIO = (B(J) - BSS(J))/(BSS(J)+EPSDEN)
RATIO = ABS(RATIO)

W(RATIO.LE.CRITER) THEN
CHANGE = CHANGE + 1

ENDIF
ENDDO

C -- Print out the calculated values for H, G, SSY, and SSYP
WRITE(7,120)
WRITE(*,120)

120 FORMAT(5X,'MAX',10X,'H',13X,'G',12X,' SSY', 11X,'SSYP')
WRITE(*,125)MAX,H,G, SSY,SSYP

WR1TE(7,125)MAX,H,G,SSY, SSYP
125 FORMAT(I8,1F13.6,4E14.6)

C -- Print out the final parameter estimates
WRrFE(7,*)'THE FINAL PARAMETER ESTIMATES FOR THIS ITERATION ARE'
WRITE(*,'(10X,"B(",II,") ="_E16.6)') (I,B(I),I=I,NP)

WR1TE(7,'(10X,"B(",II,") --",E16.6)') (I,B(I),I=I,NP)
C -- End the Box-Kanemasu Modification

WR1TE(7,'(/,5X,"P(1,KP)",9X,"P(2,KP)",9X,"P(3,KP)",9X,
+ "P(7,KP)",9X,"P(5,KP)")')

C -- Print out the P matrix

WRITE(7,129)
129 FORMAT(5X,'THE P MATRIX IS')

DO/P= 1, NP

WRITE(7,130) (P(IP,KP),KI_-I,NP)
ENDDO

130 FORMAT(5D15.7)
WRITE(7,135)

135 FORMAT(5X,'THE CORRELATION MATRIX IS')
DO IR=I,NP

DO IR2 = 1, IR

AR = P(IR, IR) * P(IR2,IR2)

R(IR,IR2) = POILIR2)/SQRT(AR)
ENDDO

ENDDO

DOIR= 1, NP
WR/TE(7,' (5El 5.7)')(R01LIID,III= 1, IR)

ENDDO

WRITE(Z*)
WRITE(7,*)'The diagonal terms of the correlation matrix are

+ all unity and the off-diagonal terms must be in the interval
+ [-1,1]. Whenever all the off-diagonal terms exceed 0.9
+ in magnitude, the estimates are highly correlated and
+ tend to be inaccurate'

DOK= 1, NP
XTY(K) -- 0.0D+0
BS(K) = B(K)
SUMG(K) = 0.0D+0
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DOJ = 1, NP

XTX(J,K) = 0.0D+0

PS(J,K)=0.0D+0

PS(J,J) = BSV(J)*BSV(J)*I.0D+7
ENDDO

ENDDO

WRITE(7,400)

400 FORMAT(7X,'MAX',8X,'NP',5X,'IP')

WRITE(7,' (7I 10,4F10.4)')MAX, NP

IF(NP.GT.CHANGE)THEN
M = MAXIT

IF(MAX.LE.M)GO TO 100
ENDIF

IF(IPRINT.LE.0) THEN
IPR/NT = IPRINT + 1

ENDIF

1000 CONTINUE

CLOSE(7)

CLOSE(8)
STOP

END

******************************************************************

SUBROUTINE MODEL

C THIS SUBROUTINE IS TO CALCULATE T, THE TRUE TEMPERATURE

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION T(1500,5),Y(1500),SIG2(1500),B (5),Z(5),

+A(5),BS(5),VINV(5,5),EXTRA(20)
DIMENSION P(5,5),PS(5,5),SUM(5)

COMMON T,N,Z,B S,I,ETA,PS,P,B,A,Y,SIG2,MODLVINV,NP,EXTRA

COMMON/MOD/AA,TL, SUM

PI--4.0D+0*DATAN(1.0D+0)

QO = EXTRAO)

TO -- EXTRA(2)

TtMEH = F_XTRA(3)
AL = EXTRA(4)
AL2 = AL*AL

X = O.OD+O

TIME = T0,1)

THCON = BS(1)

RHOCP = BS(2)*I.D6
TOL = 1.1)-8

XL =X/AL

C DIMT = (ALPHA*t/L^2)

DIMT = (THCON*TIME)/(RHOCP*AL2)

DIMTH = (THCON*(TIME-TIMEH))/(RHOCP*AL2)

C CONST = (QL/K)

CONST = (QO*AL)fH-ICON
SUMT = 0.0D+0

DO 20, M = 1, 1000

BETAM = (M - 0.5D+0)*PI
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BETA2M = BETAM*BETAM

FF1 = DEXP(-BETA2M*DIMT)

IF(TIME.LE.TIMEH) THEN
T1 = FF1

ELSE

FF2 = DEXP(-BETA2M*DIMTH)

T1 = FF1 - FF2

ENDIF

TINCR = TI*DCOS(BETAM*XL)*(1/BETA2M)

IF(M.NE.1) THEN

IF(AB S(TINCR/SUMT).LT.TOL) THEN
GOTO 15

ENDIF

ENDIF

SUMT = SUMT + TINCR

20 CONTINUE

15 IF(TIME.LE.TIMEH) THEN

ETA -- TO + CONST*(1.0D0 - XL - 2.0D0*SUMT)
ELSE

ETA -- TO - 2.0D0*CONST*SUMT

ENDIF

GOTO 1000

1000 CONTINUE

RETURN
END

SUBROUTINE SENS

C THIS SUBRO_ IS FOR CALCULATING THE SENSITIVrI_ COEFFICIENTS

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION T(1500,5),Y(1500),SIG2(1500),B(5),

+Z(5),A(5),B S(5),VINV(5,5),EXTRA(20)
DIMENSION P(5,5),PS(5,5),SUM(5)

COMMON T,N,Z,B S,I,ETA,PS,P,B,A,Y,SIG2,MODL, VINV,NP,EXTRA

COMMON/MOD/AA,TL,SUM

PI--4.0D+0*DATAN(1.0D+0)
TZ=0.0

QO --- EXTRA(l)

TO = EXTRA(2)

TIMEH = EXTRA(3)

AL = EXTRA(4)
AL2 = AL*AL

X = 0.0D+0

TIME = T(I,1)

THCON = BS(1)

RHOCP = BS(2)*I.D6
TOL = 12)-8

XL =X/AL

C DIMT = (ALPHA*t/L^2)

DIMT -- (THCON*TIME)/(RHOCP*AL2)

DIMTH = (THCON*(TIME-TIMEH))/(RHOCP*AL2)
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1000

C CONST = (QL/K)
CONST = (QO*AL)/THCON
SUMK = 0.0D+0
SUMC = 0.0D+0

DO 20, M = 1, 1000

BETAM -- (M - 0.5D+0)*PI
BETA2M = BETAM*BETAM

FF1 = DEXP(-BETA2M*DIMT)
IF(TIME.LE.TIMEH) THEN

X1 -- FFI*((1/BETA2M) + DIMT)
X2 = DIMT*FF1

ELSE

FF2 -- DEXP(-BETA2M*DIMTH)
X1 -- ((1/BETA2M)+DIMT)*FF1 - ((1/BETA2M)+DIMTH)*Fb2

X2 = DIMT*EF1 - DIM'H-t*FF2
ENDIF

XIINCR = XI*DCOS(BETAM*XL)
X2INCR = X2*DCOS(BETAM*XL)
IFfM.NE.1) THEN

IF(AB S(XIINCR/SUMK).LT.TOL.AND.AB S(X2INCR/SUMC).LT.TOL)THEN
GOTO 15

ENDIF
ENDIF

SUMK = SUMK + XIINCR
SUMC = SUMC + X2INCR

20 CONTINUE

15 W(TIME.LE.TIMEH) THEN

Z(1) -- -(CONST/THCON)*(1.0D0 - XL - 2.0D0*SUMK)
Z(2) = -2.0D0*(CONST/RHOCP)*SUMC*I.D6

ELSE

Z(1) = 2.0D0*(CONST/THCON)*SUMK
Z(2) = -2.0D0*(CONST/RHOCP)*SUMC*I.D6

ENDIF
GOTO 1000

CONTINUE
RETURN
END
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Appendix E

Input file for MODBOX.FOR

This file represents a sample input file to be used in MODBOX.FOR for the

estimation of the thermal properties. The first row of numbers represents the number of

data points, the number of parameters to be estimated, the number of independent

variables, the maximum number of iterations to be performed, the model number, and the

usual printouts, respectively. The second row represents the initial guesses for kx.q and

Ce_ which are to be estimated. The first column is the index, the second column is the

values of the temperatures, the third is the standard deviation of the measurement errors,

and the fourth column is the independent variable, time. At the end of the columns, the

first row represents the number of extra parameters to be used in the program. These

parameters are then given in the next row, and represent the magnitude of the heat flux,

the initial temperature (and in this analysis, the constant temperature at the boundary), the

heating time, and the composite thickness, Lx, respectively.

1005 2 1 2 1
0.5 1.5
1 .201515E+02 .100000E+01
2 .202875E+02 .100000E+01
3 .204508E+02 .100000E+01
4 .205471E+02 .100000E+01

.000000E+00

.500000E+00

.100000E+01

.150000E+01
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5
6
7
8
9
10

.207033E+02.100(K_E+01

.207728E+02 .100000E+01

.209213E+02 .100000E+01

.209658E+02 .100000E+01

.210080E+02 .100000E+01

.211043E+02 .100000E+01

1035
1036
1037
1038
1039
1040
1041
1042

1043
1044
1045
4

.201841E+02 .100(OE+01
•202061E+02 .100000E+01
.202114E+02 .100000E+01
.202536E+02 .1000_E+01
.201520E+02 .100000E+01
.202833E+02 .100000E+01

.202411E+02 .100000E+01

.202583E+02 .100000E+01

.201989E+02 .100000E+01

.202584E+02 .100000E+01

.201692E+02 .100000E+01

351.05 20.1515 180.036 0.0067818

.200000E+01

.250000E+01

.300000E+01

.350000E+01

.400000E+01

.450000E+01

.517086E+03

.517586E+03

.518086E+03

.518586E+03
.519086E+03
.519586E+03

.520086E+03

.520586E+03

.521086E+03

.521586E+03

.522086E+03
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Append_ F

Finite Element (EAL) program

This is the finite element program (EAL) used to estimate the thermal properties.

$ EAL THERMAL ANALYSIS RESEARCH PROJECT, EXP. 3
$
$ Debbie A. Moncinan
$

$

$ This problem solves for the temperature distribution in a 2-D plate
$ with dimensions LXm x LYre. It then uses the Modified Box-Kanemasu

$ method to sequentially estimate the thermal properties of the material.
$ The properties of interest are the effective thermal conductivity and the
$ volumetric heat capacity. The left and right surfaces of the flat plate are
$ insulated, the bottom surface is maintained at a const, temp, and at
$ the top surface is a constant heat flux. The assumptions
$ used are: Transient, one-dimensional conduction, constant properties,
$ and no internal heat generation.
$

*XQT U1
*CM=200000
$
***************************************************************************

$
$ Subroutine VARB - defines variables used in the program
$ NOTE: Variable names can only be four
$ letters long!
***************************************************************************

$
*(29 VARB DEFI) VARB
$
$ Set RACM = 0 to use Fortran logic in all subroutines
*RACM = 0
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$

$ Define geometry for 2-D plate
$

!LX---0.0479425 $Length of plate (m)
!LY=0.0067818 SHeight of plate (m)
$
SDefine number of elements and nodes in each direction
$
!NX=5
!NXI=NX+I
!NX2=N-XI+I

!NY=5
!NYI=NY+I

$Number of elements in X direction

$Number of nodes in X direction

$JJUMP for meshing; start of second row
$Number of elements in Y direction

SNumber of nodes in Y direction
!NT=NXI*NY1 STotal number of nodes in mesh
!NTOT=NT

!NI=I $Beginning node for mat'l 1 (only 1 mat'l in this analysis)
!RNI=I.
!RINC=I. $Node number increment

!CRIT = 1.E-6 $Criteria used to terminate estimation process
!IT1 = 0 $Value used in determining ff ests. are still changing signitic.
!IT2 = 0 $Value used in determining if ests. are still changing signific.
$

$ Define initial temperature, initial and fmal time, time step for
$ transient solution, total heating time, and heat flux value.
$
!TEMI=20.1515
_TIMI=0.0
!TIMF=522.086
!DELT--0.5
!TIMH=180.036
!DFLX = 1.E-8

$Initial temperature (oC)
$Initial (starting) time (sec)

$Final (stopping) time (see)
$Time step for transient solution

$Time that heat flux is applied.
$Small value added to timeh to define heat flux value

!THDL = TIMH + DFLX $This is needed due to the discontinuity at timeh
!FLUX = 350.05 $Heat flux value
$
!COU=TIMF-TIMI

!COU=COU/DELT $Number of time steps used in taking temp. measms.
!NTS=IFIX(COU+0.0001) SNumber of time steps must be an integer
!NTS=NTS+I $Total number of times from TIMI to TIMF
$

$ Enter initial parameter estimates
$

!AII=2.0 $Initial estimate for elf. thermal conductivity
!A2I=3.0 $Initial estimate for eff. volumetric heat capacity
!LOOP=0 SUsed in sequential process
*RETURN
*VARB

$

$

$ Subroutine NODE - defines the nodal positions
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$

$
*(29 NODE GENE)NODE

*XQT TAB
START "NT" $ Define the total number of nodes

UPDATE=I

JLOC $ Give the location of the nodes (set up the mesh)
$

$ In the next statement, FORMAT=I is used for rectangular coordinates;

$ N1 is the number to start the node locations at (in this case, 1);

$ 0,0,0 are the coordinates of N1; LX,0,0 are the coordinates

$ for the bottom right comer of the mesh; NX1 is the number of nodes
$ in the x direction; 1 is the increment in the node number in the x

$ direction; and NY1 is the total number of nodes in the y direction.

$ For the next line, NX1 is jjump used in the y direction; 0, LY, 0 are

$ the coordinates of the upper left node; and LX, LY, 0 are the

$ coordinates of the upper right node.
$

FORMAT = 1: "NI", 0., 0., 0.,"LX", 0., 0.,"NXl",I,"NYI"

"NXl", 0., "LY", 0.,"LX", "LY", 0.
*RETURN

*NODE

$

$

$ Subroutine ELEM - defines the element connectivity
$

$

*(29 ELEM DEFI)ELMT

*XQT ELD
$

$ Det-me K41 elements

$ K41 signifies a conductive, 4 node element.
$
RESET NUTED=I

K41

GROUP = 1

NMAT=I
!Jl=N1

!J2=NI+I

!J3=NX2+I

!J4=NX2

$Group 1
$Material 1

SJ1 is the number of the bottom LF node in an element

$J2 is the number of the bottom RT node in an element

$J3 is the number of the top RT node in an element

$J4 is the number of the top LF node in an element
"J1 .... J2" "J3" "J4", 1, "NX" "NY"

$

$ The above line sets up the nodal positions of each element. 1 is the

$ node increment and NX and NY signify the number of elements in the x and

$ y directions, respectively.
$
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$ Define K21 elements

$ K21 is used to represent the heat flux

$ Note: since we're using this element to model the heat flux, the

$ thermal conductivities and specific heat must be zero (reason for Mat'l 2)
K21

GROUP = 1

NMAT = 2

!JI=NY*NXI+I

!J2=NY*NXI+2

"J1 .... J2", 1, "NX", 1
$
*RETURN

*ELMT

$
****************************************************************************

$
$ Subroutine TABL - Defines the thickness of the elements

$
****************************************************************************

$

*(29 TABL GENE)TABL

*XQT AUS

TABLEfNI=I,NJ=I): K THIC: J=l: 1. $The thickness of K41 elements

TABLE(NI=I,NJ=I): K AREA: J=l: 1. $The area of I(21 elements
$
*RETURN

*TABL

$
****************************************************************************

$

$ Subroutine UPDA - Updates thermal property values
$

****************************************************************************

$

*(29 TABL UPDA) UPDA

*XQT AUS
$

$ The following table gives the thermal conductivity in the x and y direc.
$ NI=9 indicates that nine variables can be entered to determine k (T, rho,

$ c, kxx, kyy, kzz, kxy, kzy, kzx) however, NJ--1 indicates that k is

$ temperature independent. I -- 4 5: correspond to kxx and kyy inputs (i.e.

$ the thermal conductivities in the x and y directions). NOTE: all non-zero

$ conductivities must be specified; there are no default values. To define

$ isotropic properties, identical values for kxx, kyy, and kzz must be entered.

$ Note that a value of 1.0E+6 was given for the density. This is used as a

$ scaling factor. Therefore, the estimate for the volumelric specific heat

$ must be multiplied by (1.0E+6).
$

TABLE(NI=9,NJ=I): COND PROP 1: I = 2,3,4,5,6
OPERATION=XSUM
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J=l: 1.E+6,"A2","AI","AI","AI"
$

$ The next table sets up the 0 value properties for the K21 element
$

TABLE(NI=9,NJ=I): COND PROP 2: I = 3 4 5 6: J=l: 0.,0.,0.,0.

The next table defmes the constant heat flux applied to the top surface.

Here, J is the number of elements. To specify a line heat flux (W/m) along
prescribed line flux divided by the element's cross-sectional area.
A constant heat flux is applied for a timeh "TIMH", and is then removed.
(It is a step function)

TABLEfNI=I,NJ="NX"): SOUR K21 1: BLOCK 1: J=l, "NX": "FLUX"
BLOCK 2: J=l, "NX": "FLUX"
BLOCK 3: J=l, "NX": 0.0
BLOCK 4: J=l, "NX": 0.0

TABLE(NI=I,NJ=4): SOUR TIME: J=l: "TIMI"
J=2: "TIMH"
J=3: "THDL"
J--4: "TIMF"

$ The next table defmes the nodes that have a prescribed temperature
$ (The bottom surface in this analysis). DDATA is a counter; Note: it must
$ be a REAL value (not an integer). Here, J is the number of nodes, NOT
$ the node number!
$

TABLE(NI=I,NJ="NXI"): TEMP NODE: DDATA="RINC":J="NI","NXI": "RNI"
$

$ The next table defmes the prescribed temperatnre at each of the nodes
$ specified in the previous table. In this analysis, all specified nodes
$ are at the same temperature "TEMI" since exps. were conducted at room temp
$

TAB_=I,NJ="NXI"): APPL _: BLOCK 1: J=I,"NXI": "TEMI"
$
*RETURN
*UPDA
$

$

$ Subroutine TDAT: Builds data ftles for experimental temperatures, initial
$ guesses, and sensitivity coefficients.
$ Data format:
$ TS AUS n3 1

$ Specify both n3 and n4 to identify the data tables
$ n3 = 1: measured temperatures

$ n3 = 2: initial temperatures
$ n3 = 3: derivative #n (the n-2th parameter)
$ n4 - x position where temperatures are measured
$ (only measured at one location (n4=l) for this case).

$
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*(29 BILD TS) XXXX

!NCO2 = NCOU

$

$ Bring surface temperature data from TRAN TEMP multi-block data set using
$ XSUM and TRANSFER.

$
$*****_******************_***_*********_*_*******_************************

$
INTN = NTOT-1 $Total number of nodes - 1.

INCP -- NCOU+I $=NTS, the total number of times from TIMI to TIMF
!DBS = 0

*IF("N4" EQ 2):!DBS=NCOU

*XQT AUS
DEFINE A = 1 TRAN TEMP 1 1 2 "NCP"

*IF("N3" GT 1):*JUMP 1215

*IF("N4" EQ 1):TABLE(NI=I,NJ="NCP"): 4 TS AUS "N3" 1

*IF("N4" EQ 2):TABLE,U (NI=I,NJ="NCP"):4 TS AUS "N3" 1

TRANSFER(SOURCE=A,DBASE="DBS",SB ASE="NTN",ILIM= 1,OPERATION=XSUM)
*LABEL 1215

*IF("N4" EQ 1):TABLE(NI=I,NJ="NCP"): 2 TS AUS "N3" 1

*IF("N4" EQ 2):TABLE,U (NI=I,NJ="NCP"): 2 TS AUS "N3" 1

TRANSFER(SOURCE=A,DBASE= "DBS",SBASE="NTN", ILIM= 1,0PERATION=XSUM)
*RETURN

*XXXX

$
$*************************_***********************************************

$
$ Subroutine INVH - Minimization Procedure

$
$***************************************************************************

$
*(29 INV HEAT) INVH
$

!NCOU=NTS-1 $Total number of lime steps
*XQT AUS
$
TABLE(NI=l,NJ=1045): 4 TS AUS 1 1: I=l
J--l:.201515E+02

J--2:.202875E+02

J=3:.204508E+02

J=1043:.201989E+02

J=1044:.202584E+02

J-- 1045 :.201692E +02

!NCOU=NTS- 1

!EPS=I.0E-6 $Convergence criteria used in (b-b0)/(b0-EPS)
!NEPS=I SUsed to determine is No. of iterations exceeds NEMX.

!NEMX=25 $Maximum number of iterations
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*XQT AUS

!TINI=DS 1,1,1 (4,TS AUS,I,1) $Defines the initial exp. temperature
TABLE (NI--4,NJ="NEMX"): 4 CONV HIST 1 1 STable that stores sequential est.

STABLE (NI=I,NJ="NCOU"): 4 RES HIST 1 1

!AI=AII $Set A1 and A2 back to the initial estimates.
!A2=A2I

tAS1 = All $AS1 and AS2 are previous iteration, final estimate holders.
!AS2 = A2I

*LABEL 4000 SBegins the loop process
!A10=-A1
!A20=-A2

$

$Derivative calculations (Used to calculate the sensitivity coefficients
!TINI = DS 1,1,1 (4,TS AUS,I,1)
tN4=I

1N3=2
!NTAB=0

*DCALL(29 TRAN ANAL)

SThe above call stint, calculates temps, at the initial parameter estimates for
$the first iteration and at the final estimates of the previous iteration for
Sthe 2rid, 3rd, ... NEMX iterations.
IAI=I.001*A10 SEstimate at AI+dA1

!DAI=0.001*A10 $Step used to numerically differentiate
iN3=3

*DCALL(29 TRAN ANAL) $Calculates temps, at (AI+dA1)
!AI=A10 $Set A1 back to initial estimate
S

tA2=I.001*A20 SEstimate at A2+dA2
IDA2=0.001*A20
!N3--4

*DCALL(29 TRAN ANAL) $Calculates temps, at (A2+dA2)
!A2=A20 $Set A2 back to initial estimate
S
$ **** INVERSE HEAT TRANSFER BEGINS HERE ****
$

$ The parameters are initially estimated using the Gauss Method. These
$ estimated values are then modified using the Box-Kanemasu Method.
$

*XQT AUS
INLIB = 2 $Identifies the source library

OUTLIB = 2 $Identifies the destination library for output datasets
DEFINE TM = 4 TS AUS 1 1 $Experimental Temperatures (Y)
DEFINE

DEFINE
DEFINE

$
tA1NV = 1.0/DA1
!A1N2 = -1.0/DA1
!A2NV = 1.0/DA2

!A2N2 = -1.0/DA2

TO = 2 TS AUS 2 1
TAI=2TSAUS31
TA2 = 2 TS AUS 4 1

SCale. temps, at initial parameter est. (ETA)
$Temps at A1 + DA1
$Temps at A2 + D2A

$The following 4 statements are used in fmding
$the sensitivity coefficients. (The derivative of
Stile temperature with respect to the parameter).

192



$

D1 = SUM ("AINV" TA1, "AIN2" TO) $Delta Ti (TI@AI+DA1-TI@A1)

$ This statement sums the derivatives for the thermal conductivity

$Meaning: A1NV * TA1 + A1N2 * TO

D2 = SUM ("A2NV" TA2, "A2N2" TO) SDelta Ti (TI@A2+DA2-TI@A2)

$This statement sums the derivatives for the volumetric heat capacity
$

N1 = SUM (TM,-1. TO) $Gives the matrix (Y - ETA); the Residuals

$ Build up the X matrix using vectors containing
$ the derivatives

$

SENS MATRIX = UNION(D1,D2) $Joins D1 and D2 into a new dataset

$ D1 and D2 must have the same block length.
$

DEFINE S=SENS MATRIX 1 1 $Defmes the matrix X, i.e., the Sens. Coeffs.

ERR = XTY(S,N1)

STS = XTY(S,S)

STSI = RINV(STS)

DA -- RPROD(STSI,ERR)
$

NTN = XTYfNIM1)
TIT = XTY(TM,TM)

$Calculates XT (Y - ETA)
$Calculates XTX

$Calculates the INVERSE of (XTX)

$Calculates INV(XTX)*(XT)*(Y - ETA)

SCales the Sum of Squares, (Y-ETA)T(Y-ETA)
$Calculates YTY

!DA1 = DS 1,1,1 (2, DA AUS, 1,1)

SDA1 is the perturbation for the new estimate (thermal conductivity)
!DA2 -- DS 2,1,1 (2, DA AUS, 1,1)

SDA2 is the perturbation for the new estimate (volumetric heat capacity)

!SYS = DS 1,1,1 (2, NTN AUS, 1, 1) SThe sum of squares value
$

$The following (A1 & A2) are the estimates obtained with only the Gauss Method
$

!A1 = DAI+A1 SNew parameter estimate for the thermal conductivity

!A2 = DA2+A2 SNew parameter estimate for the volumetric heat capacity
$
$
$
$
$
$
$

$
$
$
$
lAG1 = A1

!AG2 = A2

!ASS1 = AS1

!ASS2 = AS2

!ALPH = 2.0

!AA = 1.1

*LABEL 620

*** END BASIC LOOP-BEGIN BOX-KANEMASU MODIFICATION ***

This section of the program takes the estimated parameter values found

using the Gauss Method and modifies them using the Box-Kanemasu method.

This method may allow for convergence of the parameters when the Gauss

method does not. It uses the direction provided by the Gauss method but

modifies the step size by introducing a scalar interpolation factor (H).

The fmal parameter values are calculated using the Box-Kanemasu method.

For a detailed explanation of this method, see 'Parameter Estimation' by

J. Beck and K. Arnold (p. 362-367).
SFixes the Gauss estimates

SFixes the initial estimate for that iteration

$Used in finding the parameter estimates
$Used to calculate H
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*IF("ALPH" LT 0.01):*JUMP 4001 SAlpha is too small, eslms, aren't converging.

!ALPH = ALPH/2.0 $Alpha starts out as 1.0.

!DIF1 = A1 - ASS1 $Diff btw. Gauss & final est. of previous iteration.
IDIF2 = A2 - ASS2

!AS1 --- ASS1 + ALPH*DIF1 $EsL using the modified step-size
!AS2 = ASS2 + ALPH*DIF2

!ALPHA

DATR = RTRAN(DA) $Transpose (XTX)A(-1)XT(Y - ETA)

G = RPROD(DATR,ERR) $Used in calc. H, it's the slope of the Sum of Squares
$ vs. H. By defn., it should always be a positive scalar

!GVAL = DS 1,1,1 (2, G AUS, 1, 1) $Gives the scalar value found for G
!A1 = AS1

IA2 = AS2

!N3 = 5

[N4 = 1

*DCALL(29 TRAN ANAL)

SThe above call stoat, calculates the temp. at the estimates obtained using ALPH
*XQT AUS
INLIB -- 2

OUTLIB = 2

$ EXIT

DEFINE TOG -- 2 TS AUS 5 1 $Temperatures at the Gauss est. + Step Size(alph)

DEFINE TM = 4 TS AUS 1 1 SExperimental temperatures

NSS = SUM(TM,-1. TOG) SNew (Y-ETA) using TOG temperatures.

SYP = XTY(NSS,NSS) SNew sum of squares

!SSYP = DS 1,1,1 (2, SYP AUS, 1, 1) SGives the sum of squares value
$

*IF("SSYP" GT "SYS"):*JUMP 620
$

$ The above statement is a cheek to see if the sum of squares is decreasing

$ If it's not, alpha is decreased by 1/2. This process continues until the

$ above if statement is no longer true or until alpha is < 0.01, in which
$ case the program is terminated.
$
!CHEK = SYS - ALPH*GVAL*(2.0 - (I/AA)) SThis is a check used to determine H

!H = ALPH*AA $Initially set the step-size, H equal to alpha*AA.
$
$If SSYP > CHEK, H is given a new value; see following IF strut.
$

*IF("SSYP" GT "CHEK"):!H = (ALPH*ALPH*GVAL)/(SSYP-SYS+(2.0*ALPH*GVAL))
$

$Calculate the modified parameter values using the obtained step-size (H).

IA1 = ASS1 + H*(AG1 - ASS1) SParameter estimates obtained using B-K method.
!A2 = ASS2 + H*(AG2 - ASS2)
$
$Calculate the following ratios, if RAT1 and RAT2 are < CRIT (0.0001), then

Sthe change in the estimated parameters is insignificant and the iterative

$process is terminated.
$
!RAT1 = (A1 - ASS1)/(ASS1 + EPS)
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!RAT1 = ABSfRAT1)

!RAT2 = (A2 - ASS2)/(ASS2 + EPS)

_RAT2 = ABS(RAT2)
$

!LOOP=-LOOP+I SNext iteration

*XQT AUS
$

$ Updates the table of the sequential estimates

TABLE,U(TYPE=-2): 4 CONV HIST 1 1

J="LOOP": "AI","A2","AGI","AG2"
$

$Set this iterations final estimates equal to the initial estimates for
$the next iteration.

!AS1 = A1

!AS2 = A2

$

*IF("RATI" LE "CRIT"):!IT1 = 1

*IFCRAT2" LE "CRIT"):!IT2 = 1

!ITER = IT1 + IT2 SDetermines if the change in both ests. is insignf

*IF("ITER" EQ 2):*JUMP 4001 sir ests. no longer change, stop iterating.
!NEPSfNEPS+I SGoes to next iteration

*IF("NEPS" GE "NEMX"):*JUMP 4001

$If the parameters don't converge before the max. No. of iters., end process
*XQT DCU
PRINT 2 TS AUS 2 1

PRINT 2 N1 AUS 1 1 SPrints out the residuals for each iteration.
PACK 1

ERASE 2

*JUMP 4000 $Est. haven't converged yet, go to next iteration

*LABEL 4001 $To end iteration process
*XQT DCU
PRINT 4 TS AUS 1

PRINT 4 CONV HIST 1 1

$ PRINT 1TRAN TEMP 1 1

$ PRINT 1TRAN TIME 1 1

SThe above libraries are only printed for the final iteration. (4 TS AUS 1

Sis the for each iteration; experimental temperaanes).
*RETURN

* INVH

$
_***************************************************************************

$

$ Subroutine TRAN - Solves direct problem using TRTB processor
$
****************************************************************************

$

*(29 TRAN ANAL)TRAN
*DCALL(29 NODE GENE) SGenerate the nodes used in the mesh

*DCALL(29 TABL GENE) $Generate tables needed in analysis

*DCALL(29 TABL UPDA) SUpdate the thermal properties (estimates)
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*DCALL(29 ELEM DEFI) $Defmes the elements (Cond.,Conv., Heat Source, etc
$

*XQT TGEO $Element geometry processor; it computes local coordinates
$ and performs element geometry checks. The user MUST
$ execute TGEO after each execution of ELD.

*XQT TRTB $Transient analysis processor - Implicit with CaN. code
RESET PTV=0.00001 TI="TIMI" T2_"TIMF" DT= "DELT" PRINT=0 MXNDT=100000
TEMP= "TEMI"
TSAVE="DELT"

$

*XQT AUS
!NCOU=NTS-1
!NBLO=I

*DCALL (29 BILD TS)
$

*XQT DCU $Processor that performs an array of database utility
$ functions (see Manual, Section 12-1)
DISABLE 1 EKS B

*RETURN
*TRAN
$

$

$ Main program
$

$

*DCALL (29 VARB DEFI)
*DCALL (29 INV HEAT)
*XQT EXIT
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APPENDIX G

Uncertainty Due to Experimental Measurements

The uncertainty in the estimated thermal properties due to experimental

measurement errors can be found from

'JJ
where 8R is the uncertainty in the thermal property being analyzed, 8X_ is the uncertainty

in the experimental variable, and the partial derivative of R with respect to X_ is the

sensitivity coefficient with respect to the measurement, X_. In the experiments conducted

in this investigation, error could be associated with the temperature (Xr), voltage (Xv), or

current (XI) measurements. Therefore, the uncertainty in the effective thermal

conductivity perpendicular to the fibers (kx.e#) would be given by

Bk__e# = + + (0.2)

Using this equation, a _ikx._¢of _+0.035 W/m°C was calculated. In Chapter 5, the mean

value for k_.¢ was estimated as 0.518 _+ 0.028 W/m°C. This uncertainty of !4).028

W/m°C, associated with the 95% confidence region, is approximately 20% smaller than

_k__¢¢ found from the measurement errors. This result implies that the actual error

associated with kx.¢ may be larger than estimated.
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